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“Did I get it right?”
– Most fundamental question you can ask about a computer program

Techniques for answering:

Testing
• create a set of sample inputs
• run the program on each input
• check the results
• how far does this get you?

• has anyone ever tested a 
homework and not received an A?

• why did that happen?

Proving
• consider all legal inputs
• show every input yields correct result
• how far does this get you?

• has anyone ever proven a 
homework correct and not received 
an A?

• why did that happen?

Grading
• hand in program to TA
• check to see if you got an A
• (does not apply after school is out)
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The basic, overall mechanics of proving functional programs correct is 
not particularly hard.  

– You are already doing it to some degree.  
– The real goal of this lecture to help you further organize your thoughts 

and to give you a more systematic means of understanding your 
programs.

– Of course, it can certainly be hard to prove some specific program has 
some specific property -- just like it can be hard to write a program 
that solves some hard problem

We are going to focus on proving the correctness of pure expressions
– their meaning is determined exclusively by the value they return
– don’t print,  don’t mutate global variables, don’t raise exceptions
– always terminate

• another word for pure expression is valuable expression
– but I want you to understand why the presence of possibly non-

terminating programs complicates rigorous reasoning about program 
correctness
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A total function with type t1 -> t2 is
– a function that terminates on all args : t1, producing a value of type t2

A partial function with type t1 -> t2 is
– a function that terminates on some (but not necessarily all) of its 

arguments

Unless told otherwise, when carrying out a proof, you can assume all 
functions are total and all expressions are pure/valuable.  

– Such facts can be proven by induction, but the proofs are usually rather 
boring so we typically won't make you do it.



Example Theorems

Theorem:  easy 1 20 30 == 50

Theorem:  
for all natural numbers n,
exp n == 2^n

Theorem:
for all lists xs, ys,
length (cat xs ys) == length xs + length ys

let easy x y z = 
x * (y + z)

let rec exp n =
match n with
| 0 -> 1
| n -> 2 * exp (n-1)

let rec length xs =
match xs with
| [] => 0
| x::xs => 1 + length xs

let rec cat xs1 xs2 =
match xs with
| [] -> xs2
| hd::tl -> hd :: cat tl xs2
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Key Ideas
Idea 1: The fundamental definition of when programs are equal.

two expressions are equal if and only if:
• they both evaluate to the same value, or
• they both raise the same exception, or
• they both infinite loop

we will use
what we learned
about OCaml
evaluation
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Key Ideas
Idea 1: The fundamental definition of when programs are equal.

Idea 2:  A fundamental proof principle.

two expressions are equal if and only if:
• they both evaluate to the same value, or
• they both raise the same exception, or
• they both infinite loop

if two expressions e1 and e2 are equal 
and we have a third complicated expression FOO (x)
then FOO(e1) is equal to FOO (e2)

this is the
principle of
"substitution of
equals for equals"

super useful since we can do a small, local proof 
and then use it in a big program:  modularity!
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The Workhorse:  Substitution of Equals for Equals

An example:  I know 2+2 == 4. 

I have a complicated expression: bar (foo ( ___ )) * 34

Then I also know that  bar (foo (2+2)) * 34 == bar (foo (4)) * 34.

if two expressions e1 and e2 are equal 
and we have a third complicated expression FOO (x)
then FOO(e1) is equal to FOO (e2)

If expressions contain things like mutable references, this proof principle breaks 
down.  That’s a big reason why I like functional  programming and a big reason 
we are working primarily with pure expressions.
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Important Properties of Expression Equality

(reflexivity)  every expression e is equal to itself: e == e

(symmetry) if e1 == e2 then e2 == e1

(transitivity) if e1 == e2 and e2 == e3 then e1 == e3

(evaluation) if e1 --> e2 then e1 == e2

(congruence, aka substitution of equals for equals) 
if two expressions are equal, you can substitute one for the other 
inside any other expression: 

– if e1 == e2 then e[e1/x] == e[e2/x]
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EASY EXAMPLES
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Easy Examples

Given:

Theorem:    easy 1 20 30 == 50 

Proof:   
easy 1 20 30

==  1 * (20 + 30)           
== 50
QED.

let easy x y z = x * (y + z)

notice the
2-column
proof style

facts go on the left

justifications on the right
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(left-hand side of equation)
(by evaluating easy 1 step)
(by math)



Easy Examples
We can use symbolic values in in our proofs too.  Eg:

Given:

Theorem:    for all integers n and m, easy 1 n m == n + m 

Proof:   
easy 1 n m (left-hand side of equation)

let easy x y z = x * (y + z)
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Easy Examples
We can use symbolic values in in our proofs too.  Eg:

Given:

Theorem:    for all integers n and m, easy 1 n m == n + m 

Proof:   
easy 1 n m (left-hand side of equation)

let easy x y z = x * (y + z)
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When asked to prove something “for all n : t”, one way to do that is 
to consider arbitrary elements n of that type t. In other words, all 
you get to assume is that you have an element of the given type.  
You don’t get to assume any extra properties of n.  



Easy Examples
We can use symbolic values in in our proofs too.  Eg:

Given:

Theorem:    for all integers n and m, easy 1 n m == n + m 

Proof:   
easy 1 n m (left-hand side of equation)

==  1 * (n + m)              (by evaluating easy)

let easy x y z = x * (y + z)
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Easy Examples
We can use symbolic values in in our proofs too.  Eg:

Given:

Theorem:    for all integers n and m, easy 1 n m == n + m 

Proof:   
easy 1 n m (left-hand side of equation)

==  1 * (n + m)              (by evaluating easy)
== n + m (by math)
QED.

let easy x y z = x * (y + z)
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Easy Examples
We can use symbolic values in in our proofs too.  Eg:

Given:

Theorem:    for all integers n, m, k, easy k n m == easy k m n

Proof:   
easy k n m (left-hand side of equation)

let easy x y z = x * (y + z)
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Easy Examples
We can use symbolic values in in our proofs too.  Eg:

Given:

Theorem:    for all integers n, m, k, easy k n m == easy k m n

Proof:   
easy k n m (left-hand side of equation)

== k * (n + m) (by evaluating easy)

let easy x y z = x * (y + z)
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Easy Examples
We can use symbolic values in in our proofs too.  Eg:

Given:

Theorem:    for all integers n, m, k, easy k n m == easy k m n

Proof:   
easy k n m (left-hand side of equation)

== k * (n + m) (by evaluating easy)
== k * (m + n) (by math, subst of equals for equals)

let easy x y z = x * (y + z)

I'm not going to mention
this from now on
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Easy Examples
We can use symbolic values in in our proofs too.  Eg:

Given:

Theorem:    for all integers n, m, k, easy k n m == easy k m n

Proof:   
easy k n m (left-hand side of equation)

== k * (n + m) (by evaluating easy)
== k * (m + n) (by math)
== easy k m n (by evaluating easy)
QED.

let easy x y z = x * (y + z)
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Easy Examples
We can use symbolic values in in our proofs too.  Eg:

Given:

Theorem:    for all integers n, m, k, easy k n m == easy k m n

Proof:   
easy k n m (left-hand side of equation)

== k * (n + m) (eval)
== k * (m + n) (by math)
== easy k m n (eval)
QED.

let easy x y z = x * (y + z)

substitution/
evaluating/
“eval”
a definition

the reverse: 
“folding” a definition 
back up
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An Aside:  Symbolic Evaluation
One last thing: we sometimes find ourselves with a function, like 
easy, that has a symbolic argument like k+1 for some k and we would 
like to evaluate it in our proof. eg:

easy x y (k+1)
== x * (y + (k+1)) (by evaluation of easy .... I hope)

However, that is not how OCaml evaluation works.  OCaml evaluates 
it’s arguments to a value first, and then calls the function.  

Don’t worry: if you know that the expression will evaluate to a value 
(and will not infinite loop or raise an exception) then you can 
substitute the symbolic expression for the parameter of the function
To be rigorous, you should prove it will evaluate to a value, not just 
guess ... but we won’t require you prove that in this class ...
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An Aside:  Symbolic Evaluation

An interesting example:

const ( exp )  == 7 (By evaluation of const?)

let const x = 7 

does this work for any expression?
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An Aside:  Symbolic Evaluation

An interesting example:

const ( n / 0 )  == 7 (By careless, wrong! evaluation of const)

let const x = 7 

25



An Aside:  Symbolic Evaluation

An interesting example:

const ( n / 0 )  == 7 (By careless, wrong! evaluation of const)

let const x = 7 

• n / 0 raises an exception
• so const (n / 0) raises an exception
• but 7 is just 7 and doesn’t raise an exception
• an expression that raises an exception is not equal to one that returns a value!
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An Aside:  Symbolic Evaluation

An interesting example:

const ( exp )  == 7 (By evaluation of const?)

let const x = 7 

does this work for any expression that doesn’t raise an exception?
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An Aside:  Symbolic Evaluation

An interesting example:

const ( loop 0 )  == 7 when let rec loop(x:int) = loop x      ?
more careless, wrong evaluation ...

let const x = 7 

equations:

(1)   (fun x -> e1) e2   ==   e1[e2/x]
(2)   (f e2) == e1[e2/x]                          when let rec f x = e1

and when e2 evaluates to a value 
(not an exception or infinite loop)
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An Aside:  Symbolic Evaluation

An interesting example:

const ( f 0 )  == 7 when let f i = print_endline "hello"; 6 in
?

when let r = ref 0 in 
let f(i) = let s = !r in r := s+i; if s < 0 ... in
?

let const x = 7 
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equations:

(1)   (fun x -> e1) e2   ==   e1[e2/x]
(2)   (f e2) == e1[e2/x]                          when let rec f x = e1

and when e2 evaluates to a value 
without side effects, raising an exception, or infinite loops



Summary so far:  Proof by simple calculation
Some proofs are very easy and can be done by:

– eval definitions (ie: using forwards evaluation)
– using lemmas or facts we already know (eg: math)
– folding definitions back up (ie: using reverse evaluation)

Eg:

Theorem: easy a b c == easy a c b

Proof:

easy a b c

==  a * (b + c) (by def of easy)

==  a * (c + b) (by math)

==  easy a c b (by def of easy)

Definition:
let easy x y z = x * (y + z)

given this

we do this proof
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Exercise

Definition:  A function f : t -> t -> t is commutative iff
for all x, y : t, f x y == f y x
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Definition:  A function f : t -> t -> t is associative iff
for all x, y, z : t, f x (f y z) == f (f x y) z

let foo (x:t) (y:t) : t = f (f x y) (f y x)
let bar (x:t) (y:t) : t = f x (f y (f x y))

Theorem:
for all associative and commutative functions f : t -> t -> t, and
for all a, b : t,
foo a b = bar a b

Tip: As a justification, write "by associativity of f" or
"by commutativity of f" when you want to use those properties.


