A Mathematical Model
of OCaml

Speaker: David Walker
COS 326
Princeton University

A ek
VB MIRE S

'?Ff@
A\Z

- L)
slides copyright 2020 David Walker and Andrew Agpel
permission granted to reuse these slides for non-commercial educational purposes

[From Code to Abstract Specification] ;

OCaml code can give a language semantics

— advantage: it can be executed, so we can try it out
— advantage: it is amazingly concise
» especially compared to what you would have written in Java

— disadvantage: itis a little ugly to operate over concrete ML datatypes
like “Op(el,Plus,e2)” as opposed to “el + e2”

[From Code to Abstract Specification] :

PL has a notation for these specifications:

— it has a mathematical “feel” that makes PL researchers feel special
and gives us goosebumps inside

— it operates over abstract expression syntax like “el + e2”

— it is useful to know this notation if you want to read specifications of
programming language semantics

e e.g.: Standard ML (of which OCaml is a descendent) has a formal
definition given in this notation (and C, and Java; but not OCaml...)

* e.g.: most papers in the conference POPL (ACM Principles of Prog. Lang.)

[Goal

Our goal is to explain how an expression e evaluates to a value v.

le, we will define a relation between expressions and values.

[Formal Inference Rules] :

We will define the “evaluates to” relation using a set of (inductive)
rules that allow us to prove that a particular (expression, value) pair
is part of the relation.

A rule looks like this:

premise 1 premise 2 premise 3
conclusion

You read a rule like this:

— “if premise 1 can be proven and premise 2 can be proven and ...
and premise n can be proven then conclusion can be proven”

Some rules have no premises
— this means their conclusions are always true

— we call such rules “axioms” or “base cases” =

An example rule

As a rule:
el-->vl e2 -->v2 eval_op (vl, op, v2) ==V’
elope2 >V
In English:

“If el evaluates to vl
and e2 evaluates to v2
and eval_op (v1, op, v2) is equal to Vv’
then
el op e2 evaluates to v’

In code:

let rec eval (e:exp) : exp =
match e with
| Op e(el,op,e2) -> let vl = eval el in
let v2 = eval e2 1in

let v/ = eval op vl op vZ2 1n

VI

N)

An example rule

As a rule: / assertsiis
, an integer
e/ &
| -->1

In English:

“If the expression is an integer value, it evaluates to itself.”

In code:

let rec eval (e:exp) : exp =
match e with
| Int e 1 -> Int e 1

An example rule concerning evaluation

As a rule:
el-->vl e2 [vl/x] -->v2
letx=eline2 --> v2

In English:

“If el evaluates to v1 (which is a value)
and e2 with v1 substituted for x evaluates to v2
then let x=el in e2 evaluates to v2.”

In code:

let rec eval (e:exp) : exp =

match e with
Let e(x,el,e2) -> let vl = eval el in
eval (substitute vl x e2)

An example rule concerning evaluation

] ;

As a rule: . .
>aruie typical “lambda” notation
for a function with
Ax.e --> Ax.e argument x, body e
In English:

“A function value evaluates to itself.”

In code:

let rec eval (e:exp) : exp =
match e with

| Fun e (x,e) -> Fun e (x,e)

[An example rule concerning evaluation] 1

As a rule:
el --> Ax.e e2 -->v?2 e[v2/x] -->v
ele2 ->v

In English:

“if el evaluates to a function with argument x and body e
and e2 evaluates to a value v2
and e with v2 substituted for x evaluates to v
then el applied to e2 evaluates to v”

In code:

let rec eval (e:exp) : exp =
match e with

| Call e (el,e2) —>
(match eval el with
| Fun e (x,e) -> eval (substitute (eval e2) x e)

N
QA W\
| e o o) [:,“‘ >l‘\ |
\
N

An example rule concerning evaluation] =

As a rule:
el->recfx=e e2 -->vV e[rec f x = e/f][v/x] --> v2
ele2 --> v2

In English:
Iluggh”
In code:
let rec eval (e:exp) : exp =
match e with
| (Rec_ e (f,x,e)) as £ val ->

let v = eval e2 1in
substitute f val (substitute v x e) g

let rec eval

Comparison: Code vs. Rules

]12

complete eval code:

(e:exp) : exp =

match e with

Var e x —-> raise

Int e 1 -> Int e i
Op e(el,op,e2) (eval e2)

Let e(x,el,e2)

-> eval op
(substitute
(UnboundVariable x)

(eval el) op

-> eval (eval el) x e2)

Fun e (x,e) -> Fun e (x,e)
FunCall e (el,e2) ->
(match eval el
| Fun e (x,e) —-> eval (Let e (x,e2,e))

| —-> raise TypeError)
LetRec e (x,el,e2) ->
(Rec_e (f,x,e))
let v =
substitute £ val £

as £ val ->
eval e2 1in

(substitute v x e)

Almost isomorphic:

— one rule per pattern-matching clause

complete set of rules:

ie”Z
i -->i

el-->vl e2 -->v2 eval_op (v1, op, v2) ==v
elope2 -->v
el->vl e2 [vl/x] -->v2
letx=eline2 --> v2
Ax.e --> Ax.e
el --> \x.e e2 -->v2 e[v2/x] -->v
ele2 ->v

el->recfx=e e2-->v2 e[recfx=e/fl[v2/x] -->v3

ele2 --> v3

— recursive call to eval whenever there is a --> premise inarule

— what’s the main difference?

let rec eval

Comparison: Code vs. Rules 2

complete eval code:

(e:exp) : exp =

match e with

Int e 1 -> Int e i

Op e(el,op,e2) -> eval op (eval el) op (eval e2)
Let e(x,el,e2) -> eval (substitute (eval el) x e2)
Var e x —-> raise (UnboundVariable x)
Fun e (x,e) -> Fun e (x,e)
FunCall e (el,e2) ->

(match eval el

| Fun e (x,e) —-> eval (Let e (x,e2,e))

-> raise TypeError)

IE

LetRec e (x,el,e2) ->
(Rec_e (f,x,e)) as £ val ->
let v = eval e2 in

substitute £ val f (substitute v x e)

complete set of rules:

ieZ
i -->i

el-->vil e2 -->v2 eval_op (v1, op, v2) ==v
elope2 -->v
el-->vl e2 [vl/x] -->v2
letx=eline2 --> v2
Ax.e --> Ax.e
el --> Ax.e e2 -->v2 e[v2/x] -->v
ele2 ->v

el->recfx=e e2-->v2 e[recfx=e/fl[v2/x] -->v3

ele2 --> v3

 There’s no formal rule for handling free variables

* No rule for evaluating function calls when a non-function in the caller position

* In general, no rule when further evaluation is impossible

— the rules express the legal evaluations and say nothing about what to do in error situa*ions,

— the code handles the error situations by raising exceptions

L)))

— type theorists prove that well-typed programs don’t run into undefined cases

[This Lecture's Model of Computation] 4

This lecture's model of computation is often called the substitution model

It models pure programming features succinctly, but non-trivial changes
are required to model more sophisticated constructs:

* |/0O, exceptions, mutation, concurrency, ...

* we can build models of these things, but they aren’t as simple.

e ... even modelling substitution was somewhat tricky

It’s useful for reasoning about correctness of algorithms and optimizations
— we can use it to formally prove that, for instance:
* map f (map g xs) == map (comp f g) xs

e proof: by induction on the length of the list xs, using the definitions of the
substitution model

It is not useful for reasoning about execution time or space
— more complex models needed there

This Lecture's Model of Computation] 1

... even modelling substitution was somewhat tricky

You can say that again!
| got it wrong the first
time | tried, in 1932.

Fixed the bug by 1934,

though.

Alonzo Church,
1903-1995

Princeton Prof Fr
1929-196 \ "yg;'?;,:f;

Church's mistake] 16

map is free here —
it refers to a
library function

substitute:

fun xs -> map (+) xs

forfin: the problem was that the
value you substituted in
funys -> had a free variable (map)
let map xs = 0::xs in in it that was
f (map ys) captured.

and if you don't wat

funys -> /

let map xs = 0::xs in
(fun xs -> map (+) xs) (map ys) 2

Church's mistake

substitute:

fun xs -> map (+) xs

for fin:

funys ->
let map xs = 0::xs in
f (map ys)

to do it right, you need to rename some variables:

fun ys -> change "map" to
let z xs = 0::xsin —— "z" before

(fun xs -> map (+) xs) (z ys) W//)

Recap]”

In this lecture, we explored a mathematical specification of OCaml expressions

— we specified the evaluation model using a set of inference rules
— these inference rules defined a relation between expressions and values

— we found that values evaluated to themselves
* values are the results of evaluation
* integer constants and functions both count as values in this model of execution

— and we found that substitution is used to handle constructs that involve
variable binding

* let expressions: “let x=elin e2” -- substitute el’s value for x in e2
* function application: “(fun x ->e2) el” -- substitute el’s value for x in e2

* recursive function application: “(rec f x = el) e2” -- like non-recursive functions,
but also substitute recursive function for name of function

— more on this in COS 510

Exercise

Try extending the language and rules for evaluation with:
* booleans (true, false, and, or, not, if)
* pairs (with pair creation and field extraction operations)

