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From Code to Abstract Specification

OCaml code can give a language semantics
– advantage:  it can be executed, so we can try it out
– advantage:  it is amazingly concise

• especially compared to what you would have written in Java
– disadvantage:  it is a little ugly to operate over concrete ML datatypes 

like “Op(e1,Plus,e2)” as opposed to “e1 + e2”
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From Code to Abstract Specification

PL has a notation for these specifications:

– it has a mathematical “feel” that makes PL researchers feel special 
and gives us goosebumps inside

– it operates over abstract expression syntax like “e1 + e2”

– it is useful to know this notation if you want to read specifications of 
programming language semantics
• e.g.: Standard ML (of which OCaml is a descendent) has a formal 

definition given in this notation (and C, and Java; but not OCaml…)
• e.g.: most papers in the conference POPL (ACM Principles of Prog. Lang.)
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Goal

Our goal is to explain how an expression e evaluates to a value v.

Ie, we will define a relation between expressions and values.
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Formal Inference Rules
We will define the “evaluates to” relation using a set of (inductive) 
rules that allow us to prove that a particular (expression, value) pair 
is part of the relation.

A rule looks like this:

You read a rule like this:
– “if premise 1 can be proven and premise 2 can be proven and ... 

and premise n can be proven then conclusion can be proven”

Some rules have no premises
– this means their conclusions are always true
– we call such rules “axioms” or “base cases”

premise 1        premise 2        ...        premise 3
conclusion
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An example rule

e1 --> v1            e2 --> v2          eval_op (v1, op, v2) == v’
e1 op e2  --> v’

let rec eval (e:exp) : exp = 
match e with 
| Op_e(e1,op,e2) -> let v1 = eval e1 in

let v2 = eval e2 in
let v’ = eval_op v1 op v2 in
v’

“If e1 evaluates to v1 
and e2 evaluates to v2 
and eval_op (v1, op, v2) is equal to v’
then
e1 op e2 evaluates to v’

As a rule:

In English:

In code:
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An example rule

i ϵ Z
i --> i

let rec eval (e:exp) : exp = 
match e with 
| Int_e i -> Int_e i
...

“If the expression is an integer value, it evaluates to itself.”

As a rule:

In English:

In code:

asserts i is 
an integer
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An example rule concerning evaluation

e1 --> v1            e2 [v1/x] --> v2
let x = e1 in e2  --> v2

let rec eval (e:exp) : exp = 
match e with 
| Let_e(x,e1,e2) -> let v1 = eval e1 in 

eval (substitute v1 x e2)
...

“If e1 evaluates to v1 (which is a value)
and e2 with v1 substituted for x evaluates to v2
then let x=e1 in e2 evaluates to v2.”

As a rule:

In English:

In code:
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An example rule concerning evaluation

λx.e --> λx.e

let rec eval (e:exp) : exp = 
match e with 
...
| Fun_e (x,e) -> Fun_e (x,e)
...

“A function value evaluates to itself.”

As a rule:

In English:

In code:

typical “lambda” notation
for a function with
argument x, body e
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An example rule concerning evaluation

e1 --> λx.e e2 --> v2          e[v2/x] --> v
e1 e2  --> v

let rec eval (e:exp) : exp = 
match e with 
..
| Call_e (e1,e2) -> 

(match eval e1 with
| Fun_e (x,e) -> eval (substitute (eval e2) x e)
| ...)

...

“if e1 evaluates to a function with argument x and body e
and e2 evaluates to a value v2
and e with v2 substituted for x evaluates to v
then e1 applied to e2 evaluates to v”

As a rule:

In English:

In code:

10



An example rule concerning evaluation

e1--> rec f x = e        e2 --> v        e[rec f x = e/f][v/x] --> v2
e1 e2  --> v2

let rec eval (e:exp) : exp = 
match e with 

...
| (Rec_e (f,x,e)) as f_val ->

let v = eval e2 in
substitute f_val (substitute v x e) g

“uggh”

As a rule:

In English:

In code:
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Comparison:  Code vs. Rules

Almost isomorphic:
– one rule per pattern-matching clause
– recursive call to eval whenever there is a --> premise in a rule
– what’s the main difference?

let rec eval (e:exp) : exp = 
match e with 
| Int_e i -> Int_e i

| Op_e(e1,op,e2) -> eval_op (eval e1) op (eval e2)
| Let_e(x,e1,e2) -> eval (substitute (eval e1) x e2)
| Var_e x -> raise (UnboundVariable x)

| Fun_e (x,e) -> Fun_e (x,e)
| FunCall_e (e1,e2) -> 

(match eval e1 
| Fun_e (x,e) -> eval (Let_e (x,e2,e))

| _ -> raise TypeError)
| LetRec_e (x,e1,e2) -> 

(Rec_e (f,x,e)) as f_val ->

let v = eval e2 in
substitute f_val f (substitute v x e) e1 --> rec f x = e          e2 --> v2    e[rec f x = e/f][v2/x] --> v3

e1 e2  --> v3

e1 --> v1            e2 --> v2          eval_op (v1, op, v2) == v
e1 op e2  --> v

i ϵ Z
i --> i

e1 --> v1            e2 [v1/x] --> v2
let x = e1 in e2  --> v2

λx.e --> λx.e

e1 --> λx.e e2 --> v2          e[v2/x] --> v
e1 e2  --> v

complete eval code: complete set of rules:
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Comparison:  Code vs. Rules

• There’s no formal rule for handling free variables
• No rule for evaluating function calls when a non-function in the caller position
• In general, no rule when further evaluation is impossible

– the rules express the legal evaluations and say nothing about what to do in error situations
– the code handles the error situations by raising exceptions
– type theorists prove that well-typed programs don’t run into undefined cases

e1 --> v1            e2 --> v2          eval_op (v1, op, v2) == v
e1 op e2  --> v

i ϵ Z
i --> i

e1 --> v1            e2 [v1/x] --> v2
let x = e1 in e2  --> v2

λx.e --> λx.e

e1 --> λx.e e2 --> v2          e[v2/x] --> v
e1 e2  --> v

complete eval code: complete set of rules:

e1 --> rec f x = e          e2 --> v2    e[rec f x = e/f][v2/x] --> v3
e1 e2  --> v3

let rec eval (e:exp) : exp = 
match e with 
| Int_e i -> Int_e i

| Op_e(e1,op,e2) -> eval_op (eval e1) op (eval e2)
| Let_e(x,e1,e2) -> eval (substitute (eval e1) x e2)
| Var_e x -> raise (UnboundVariable x)

| Fun_e (x,e) -> Fun_e (x,e)
| FunCall_e (e1,e2) -> 

(match eval e1 
| Fun_e (x,e) -> eval (Let_e (x,e2,e))

| _ -> raise TypeError)
| LetRec_e (x,e1,e2) -> 

(Rec_e (f,x,e)) as f_val ->

let v = eval e2 in
substitute f_val f (substitute v x e)
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This Lecture's Model of Computation 14

This lecture's model of computation is often called the substitution model

It models pure programming features succinctly, but non-trivial changes 
are required to model more sophisticated constructs:  

• I/O, exceptions, mutation,  concurrency, …
• we can build models of these things, but they aren’t as simple.
• ... even modelling substitution was somewhat tricky

It’s useful for reasoning about correctness of algorithms and optimizations
– we can use it to formally prove that, for instance:

• map f (map g xs) == map (comp f g) xs
• proof:  by induction on the length of the list xs, using the definitions of the 

substitution model

It is not useful for reasoning about execution time or space
– more complex models needed there
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Alonzo Church, 
1903-1995

Princeton Professor, 
1929-1967

You can say that again!  
I got it wrong the first 
time I tried, in 1932.  

Fixed the bug by 1934, 
though.



Church's mistake 16

fun xs -> map (+) xs

fun ys ->
let map xs = 0::xs in
f (map ys)

substitute:

for f in:

and if you don't watch out, you will get:

fun ys ->
let map xs = 0::xs in
(fun xs -> map (+) xs) (map ys)

map is free here –
it refers to a 

library function

the problem was that the 
value you substituted in 

had a free variable (map) 
in it that was

captured.



Church's mistake 17

fun xs -> map (+) xs

fun ys ->
let map xs = 0::xs in
f (map ys)

substitute:

for f in:

to do it right, you need to rename some variables:

fun ys ->
let z xs = 0::xs in
(fun xs -> map (+) xs) (z ys)

change "map" to 
"z" before 

substituting



Recap 18

In this lecture, we explored a mathematical specification of OCaml expressions

– we specified the evaluation model using a set of inference rules

– these inference rules defined a relation between expressions and values

– we found that values evaluated to themselves
• values are the results of evaluation
• integer constants and functions both count as values in this model of execution

– and we found that substitution is used to handle constructs that involve 
variable binding
• let expressions:  “let x = e1 in e2”  -- substitute e1’s value for x in e2
• function application:  “(fun x -> e2) e1” -- substitute e1’s value for x in e2
• recursive function application:  “(rec f x = e1) e2” -- like non-recursive functions, 

but also substitute recursive function for name of function

– more on this in COS 510



Exercise
Try extending the language and rules for evaluation with:
• booleans (true, false, and, or, not, if)
• pairs (with pair creation and field extraction operations) 
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