
Implementing OCaml in OCaml
Part 3: More Features, More Fun!

Speaker: David Walker
COS 326

Princeton University

slides copyright 2020 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes

Scaling up the Language 2

type exp = Int of int | Op of exp * op * exp

| Var of variable | Let of variable * exp * exp

| Fun of variable * exp | App of exp * exp

Scaling up the Language 3

type exp = Int of int | Op of exp * op * exp

| Var of variable | Let of variable * exp * exp

| Fun of variable * exp | App of exp * exp

OCaml’s
fun x -> e

is represented as
Fun(x,e)

Scaling up the Language 4

type exp = Int of int | Op of exp * op * exp

| Var of variable | Let of variable * exp * exp

| Fun of variable * exp | App of exp * exp

A function "application"
(ie: function call)

fact 3
is implemented as

App (Var “fact”, Int 3)

Scaling up the Language 5

type exp = Int of int | Op of exp * op * exp

| Var of variable | Let of variable * exp * exp

| Fun of variable * exp | App of exp * exp

let is_value (e:exp) : bool =
match e with

| Int _ -> true

| Fun (_,_) -> true

| (Op (_,_,_)

| Let (_,_,_)

| Var _

| FunApp (_,_)) -> false

Functions are
values!

Easy Exam Question: What value does the OCaml interpreter produce when
it evaluates the expression (fun x -> 3)?

Answer: the value produced is (fun x -> 3)

Scaling up the Language 6

type exp = Int of int | Op of exp * op * exp

| Var of variable | Let of variable * exp * exp

| Fun of variable * exp | App of exp * exp

let is_value (e:exp) : bool =
match e with

| Int _ -> true

| Fun (_,_) -> true

| (Op (_,_,_)

| Let (_,_,_)

| Var _

| App (_,_)) -> false

Function Apps are
not values.

Scaling up the Language 7

let rec eval (e:exp) : exp =

match e with

| Int i -> Int i
| Op(e1,op,e2) -> eval_op (eval e1) op (eval e2)

| Let(x,e1,e2) -> eval (substitute (eval e1) x e2)

| Var x -> raise (UnboundVariable x)

| Fun (x,e) -> Fun (x,e)

| App (e1,e2) ->

(match eval e1, eval e2 with

| Fun (x,e), v2 -> eval (substitute v2 x e)

| _ -> raise TypeError)

Simplifying a little 8

let rec eval (e:exp) : exp =

match e with

| Int i -> Int i
| Op(e1,op,e2) -> eval_op (eval e1) op (eval e2)

| Let(x,e1,e2) -> eval (substitute (eval e1) x e2)

| Var x -> raise (UnboundVariable x)

| Fun (x,e) -> Fun (x,e)

| App (e1,e2) ->

(match eval e1 with

| Fun (x,e) -> eval (substitute (eval e2) x e)

| _ -> raise TypeError)

We don’t really need
to pattern-match on e2.

Just evaluate here

Simplifying a little 9

let rec eval (e:exp) : exp =

match e with

| Int i -> Int i
| Op(e1,op,e2) -> eval_op (eval e1) op (eval e2)

| Let(x,e1,e2) -> eval (substitute (eval e1) x e2)

| Var x -> raise (UnboundVariable x)

| Fun (x,e) -> Fun (x,e)

| App (ef,e1) ->

(match eval ef with

| Fun (x,e2) -> eval (substitute (eval e1) x e2)

| _ -> raise TypeError)

This looks like
the case for let!

(fun x -> x+41) 1
-->
1+41
-->
42

let x = 1 in x+41
-->
1+41
-->
42

Let and Lambda 10

In general:

let x = e1 in e2 == (fun x -> e2) e1

So we could write: 11

let rec eval (e:exp) : exp =

match e with

| Int i -> Int i
| Op(e1,op,e2) -> eval_op (eval e1) op (eval e2)

| Let(x,e1,e2) -> eval (App (Fun (x,e2), e1))

| Var x -> raise (UnboundVariable x)

| Fun (x,e) -> Fun (x,e)

| App (ef,e2) ->

(match eval ef with

| Fun (x,e1) -> eval (substitute (eval e1) x e2)

| _ -> raise TypeError)

In programming-languages speak: “Let is syntactic sugar for a function App”

Syntactic sugar: A new feature defined by a simple, local transformation.

Recursive Function Definitions in OCaml 12

A "let rec" definition does two independent things

let rec f x = f (x+1) in
f 3

The "rec" part: allows f to
show up in the function body

The "let" part: allows f to
show up in the following

expression

Recursive Function Definitions in OCaml 13

In our interpreter, we are going to split those things
apart into two different constructs

let rec f x = f (x+1) in
f 3

let f = (rec f x = f (x+1)) in
f 3

A new construct for our
interpreter: a recursive

function

Just an ordinary "let"

Often called the
"Principle of

Orthogonality"

Recursive definitions 14

type exp = Int of int | Op of exp * op * exp

| Var of variable | Let of variable * exp * exp

| Fun of variable * exp | App of exp * exp

| Rec of variable * variable * exp

function name (eg: "f")

argument name (eg: "x")

body of the function

Recursive Function Definitions in OCaml 15

let f = (rec f x = f (x+1)) in
f 3

Let (“f”,
Rec (“f”, “x”,
App (Var “f”, Op (Var “x”, Plus, Int 1))

),
App (Var “f”, Int 3)
)

Recursive Function Definitions in OCaml 16

To avoid confusion, let's rename the variable used in
the following expression (but not the function body).

let g = (rec f x = f (x+1)) in
g 3

Let (“g”,
Rec (“f”, “x”,
App (Var “f”, Op (Var “x”, Plus, Int 1))

),
App (Var “g”, Int 3)
)

Recursive Values 17

type exp = Int of int | Op of exp * op * exp

| Var of variable | Let of variable * exp * exp

| Fun of variable * exp | App of exp * exp

| Rec of variable * variable * exp

rec f x = x+1fun x = x+1

Notice that the following values are the same:

rec g x = x+1

rec i_dont_care x = x+1

So now that we have the "Rec" form in our syntax, we could
delete the "Fun" form as it is unnecessary and can be encoded:

Rec("_", var, body)Fun(var, body)

Recursive definitions 18

type exp = Int of int | Op of exp * op * exp

| Var of variable | Let of variable * exp * exp

| Fun of variable * exp | App of exp * exp

| Rec of variable * variable * exp

let is_value (e:exp) : bool =

match e with

| Int _ -> true

| Fun (_,_) -> true

| Rec of (_,_,_) -> true

| (Op (_,_,_) | Let (_,_,_) |

Var _ | App (_,_)) -> false

Interlude: Notation for Substitution

“Substitute value v for variable x in expression e:” e [v / x]

(x + y) [7/y] is (x + 7)

(let x =30 in let y=40 in x + y) [7/y] is (let x =30 in let y=40 in x + y)

(let y = y in let y = y in y + y) [7/y] is (let y = 7 in let y = y in y + y)

Examples of substitution:

19

Evaluating Recursive Functions 20

Basic evaluation rule for recursive functions:

(rec f x = body) arg --> body [arg/x] [rec f x = body/f]

entire function substituted
for function name

argument value substituted
for parameter

Evaluating Recursive Functions 21

let g =
rec f x ->

if x <= 0 then x
else x + f (x-1)

in g 3

Start out with
a let bound to
a recursive function:

The Substitution:
g 3 [rec f x ->

if x <= 0 then x
else x + f (x-1) / g]

The Result: (rec f x ->
if x <= 0 then x else x + f (x-1)) 3

Evaluating Recursive Functions

22

Recursive
Function App:

The Substitution:

The Result:

(if x <= 0 then x else x + f (x-1))
[rec f x ->

if x <= 0 then x
else x + f (x-1) / f]

[3 / x]

(rec f x ->
if x <= 0 then x else x + f (x-1)) 3

(if 3 <= 0 then 3 else 3 +
(rec f x ->

if x <= 0 then x
else x + f (x-1)) (3-1))

Substitute entire function
for function name

Substitute argument
for parameter

Evaluating Recursive Functions 23

let rec eval (e:exp) : exp =
match e with
| Int i -> Int i
| Op(e1,op,e2) -> eval_op (eval e1) op (eval e2)
| Let(x,e1,e2) -> eval (substitute (eval e1) x e2)
| Var x -> raise (UnboundVariable x)
| Fun (x,e) -> Fun (x,e)
| App (e1,e2) ->

(match eval e1 with
| Fun (x,e) ->

let v = eval e2 in
substitute e x v

| (Rec (f,x,e)) as f_val ->
let v = eval e2 in
let body = substitute f_val f

(substitute v x e) in
eval body

| _ -> raise TypeError)

pattern as x

match the pattern
and binds x to value

More Evaluation
(rec fact n = if n <= 1 then 1 else n * fact(n-1)) 3
-->
if 3 < 1 then 1 else
3 * (rec fact n = if ... then ... else ...) (3-1)

-->
3 * (rec fact n = if …) (3-1)
-->
3 * (rec fact n = if …) 2
-->
3 * (if 2 <= 1 then 1 else 2 * (rec fact n = ...)(2-1))
-->
3 * (2 * (rec fact n = ...)(2-1))
-->
3 * (2 * (rec fact n = ...)(1))
-->
3 * 2 * (if 1 <= 1 then 1 else 1 * (rec fact ...)(1-1))
-->
3 * 2 * 1

24

Exercise 1
(a) What is the result of the following substitution? In your
answer, rename variables so you have as many unique variable
names as possible.

(b) What are the free variables of the following expression?

(c) What are the free variables of your answer to (a)? More
generally, how are the free variables of the expression e and the
expression (e[v/x]) related?

25

(let g = rec f (x) = let g = fun x -> g (f x) in 0 in g (fun g -> g)) [(fun g -> g + 1)/g]

let g = rec f (x) = let g = fun x -> g (f x) in 0 in g (fun g -> g)

Exercise 2
Try extending the language and its evaluation system with:
• booleans (true, false, and, or, not, if)
• pairs (with pair creation and field extraction operations)

26

