# Implementing OCaml in OCaml Part 3: More Features, More Fun! 

## Speaker: David Walker <br> COS 326

Princeton University

## Scaling up the Language

```
type exp = Int of int | Op of exp * op * exp
    | Var of variable | Let of variable * exp * exp
    | Fun of variable * exp | App of exp * exp
```


## Scaling up the Language

```
type exp = Int of int | Op of exp * op * exp
    | Var of variable | Let of variable * exp * exp
    | Fun of variable * exp | App of exp * exp
```


## OCaml's

fun $x->$ e is represented as

Fun(x,e)

## Scaling up the Language

```
type exp = Int of int | Op of exp * op * exp
    | Var of variable | Let of variable * exp * exp
    | Fun of variable * exp | App of exp * exp
```

A function "application"
(ie: function call)
fact 3
is implemented as
App (Var "fact", Int 3)

## Scaling up the Language

```
type exp = Int of int | Op of exp * op * exp
    | Var of variable | Let of variable * exp * exp
    | Fun of variable * exp | App of exp * exp
let is_value (e:exp) : bool =
    match e with
    | Int _ -> true
    | Fun (_,_) -> Erue
    | ( Op (_'_'_)
    | Let (_,_'_)
    | Var
    | FunApp (_,_) ) -> false
```

Easy Exam Question: What value does the OCaml interpreter produce when it evaluates the expression (fun $x->3$ )?

Answer: the value produced is (fun $x->3$ )

## Scaling up the Language

```
type exp = Int of int | Op of exp * op * exp
    | Var of variable | Let of variable * exp * exp
    | Fun of variable * exp | App of exp * exp
let is_value (e:exp) : bool =
    match e with
    | Int _ -> true
    | Fun (_,_) -> true
    | ( Op (_,_'_)
    | Let (_'_'_)
    | Var
    | App (_,_) ) -> false
```

Function Apps are not values.

## Scaling up the Language

```
let rec eval (e:exp) : exp =
    match e with
    | Int i -> Int i
    | Op(e1,op,e2) -> eval_op (eval e1) op (eval e2)
    | Let(x,e1,e2) -> eval (substitute (eval e1) x e2)
    | Var x -> raise (UnboundVariable x)
    | Fun (x,e) -> Fun (x,e)
    | App (e1,e2) ->
    (match eval e1, eval e2 with
    | Fun (x,e), v2 -> eval (substitute v2 x e)
    | _ -> raise TypeError)
```


## Simplifying a little

```
let rec eval (e:exp) : exp =
```

    match e with
    | Int i -> Int i
    | Op(e1,op,e2) -> eval_op (eval e1) op (eval e2)
    | Let(x,e1,e2) -> eval (substitute (eval e1) x e2)
    | Var x -> raise (UnboundVariable x)
    | Fun ( \(x, e\) ) -> Fun ( \(x, e\) )
    | App (e1,e2) ->
    (match eval e1 with
    | Fun (x,e) -> eval (substitute (eval e2) x e)
    _ -> raise TypeError)
    We don't really need to pattern-match on e2. Just evaluate here

## Simplifying a little

```
let rec eval (e:exp) : exp =
```

    match e with
    | Int i -> Int i
    | Op(e1,op,e2) -> eval_op (eval e1) op (eval e2)
    | Let(x,e1,e2) -> eval (substitute (eval e1) x e2)
    | Var x -> raise (UnboundVariable x)
    | Fun (x,e) -> Fun ( \(x, e\) )
    | App (ef,e1) ->
    (match eval ef with
    | Fun (x,e2) -> eval (substitute (eval e1) x e2)
    | _ -> raise TypeError)
    This looks like the case for let!

## Let and Lambda

## let $x=1$ in $x+41$ <br> $$
-->
$$ <br> $1+41$ <br> --> <br> 42

$$
\begin{aligned}
& (\text { fun } x->x+41) \quad 1 \\
& --> \\
& 1+41 \\
& --> \\
& 42
\end{aligned}
$$

In general:

$$
\text { let } x=e 1 \text { in ez }==(\text { fun } x->e 2) \text { el }
$$

## So we could write:

```
let rec eval (e:exp) : exp =
    match e with
    | Int i -> Int i
    | Op(e1,op,e2) -> eval_op (eval e1) op (eval e2)
    | Let(x,e1,e2) -> eval (App (Fun (x,e2), e1))
    | Var x -> raise (UnboundVariable x)
    | Fun (x,e) -> Fun (x,e)
    | App (ef,e2) ->
        (match eval ef with
        | Fun (x,el) -> eval (substitute (eval el) x e2)
        | _ -> raise TypeError)
```

In programming-languages speak: "Let is syntactic sugar for a function App"

Syntactic sugar: A new feature defined by a simple, local transformation.

## Recursive Function Definitions in OCaml

A "let rec" definition does two independent things

The "rec" part: allows f to show up in the function body


## Recursive Function Definitions in OCaml

In our interpreter, we are going to split those things apart into two different constructs

$$
\text { let rec } f x=f(x+1) \text { in }
$$

A new construct for our interpreter: a recursive function

```
let f = (rec f x = f (x+1)) in
f 3

\section*{Recursive definitions}


\section*{Recursive Function Definitions in OCaml}
```

let f}=(\mathrm{ rec f }x=f(x+1)) in
f 3

```
```

Let ("f",
Rec ("f", "X",
App (Var "f", Op (Var "x", Plus, Int 1))
),
App (Var "f", Int 3)
)

```

\section*{Recursive Function Definitions in OCaml}

To avoid confusion, let's rename the variable used in the following expression (but not the function body).
```

let g = (rec f x = f (x+1)) in
g 3

```
```

Let ("g",
Rec ("f", "x",
App (Var "f", Op (Var "x", Plus, Int 1))
),
App (Var "g", Int 3)
)

```

\section*{Recursive Values}
```

type exp = Int of int | Op of exp * op * exp
| Var of variable | Let of variable * exp * exp
| Fun of variable * exp | App of exp * exp
Rec of variable * variable * exp

```

Notice that the following values are the same:
\[
\operatorname{fun} x=x+1
\]
\[
\operatorname{rec} f x=x+1
\]
```

rec g x = x+1

```
```

rec i_dont_care }x=x+

```

So now that we have the "Rec" form in our syntax, we could delete the "Fun" form as it is unnecessary and can be encoded:

\section*{Recursive definitions}
```

type exp = Int of int | Op of exp * op * exp
| Var of variable | Let of variable * exp * exp
| Fun of variable * exp | App of exp * exp
| Rec of variable * variable * exp

```
```

let is_value (e:exp) : bool =
match e with
| Int _ -> true
| Fun (_,_) -> true
| Rec of (_'_,_) -> true
| (Op (_,_'_) | Let (_,_,_)
Var _ | App (_,_) ) -> false

```

\section*{Interlude: Notation for Substitution}
"Substitute value \(v\) for variable \(x\) in expression \(e: "\) e[v/x]

Examples of substitution:
\[
\begin{array}{lll}
(x+y)[7 / y] & \text { is } & (x+7) \\
(\text { let } x=30 \text { in let } y=40 \text { in } x+y)[7 / y] & \text { is } & \text { (let } x=30 \text { in let } y=40 \text { in } x+y) \\
(\text { let } y=y \text { in let } y=y \text { in } y+y)[7 / y] & \text { is } & \text { (let } y=7 \text { in let } y=y \text { in } y+y)
\end{array}
\]

\section*{Evaluating Recursive Functions}

Basic evaluation rule for recursive functions:

argument value substituted for parameter
entire function substituted for function name

\section*{Evaluating Recursive Functions}

Start out with
a let bound to
a recursive function:
```

let g =
rec f x ->
if x <= 0 then x
else x + f (x-1)
in g 3

```
```

g 3 [rec f x ->
if x <= 0 then x
else x + f (x-1) / g]

```

The Result:
```

    (rec f x ->
    if }x<=0\mathrm{ then }x\mathrm{ else }x+f(x-1)) 
    ```

\section*{Evaluating Recursive Functions}

Recursive
Function App:
    if \(x<=0\) then \(x\) else \(x+f(x-1)) 3\)
    (if \(x<=0\) then \(x\) else \(x+f(x-1)\) )
    [ rec f x ->

The Substitution:

Substitute argument for parameter

Substitute entire function for function name
\[
\text { (if } 3<=0 \text { then } 3 \text { else } 3+
\]

The Result:
```

    (rec f x ->
    if x <= 0 then x
    else x + f (x-1)) (3-1))
    ```

\section*{Evaluating Recursive Functions}
```

let rec eval (e:exp) : exp =
match e with
| Int i -> Int i
| Op(e1,op,e2) -> eval_op (eval e1) op (eval e2)
| Let(x,e1,e2) -> eval (substitute (eval e1) x e2)
| Var x -> raise (UnboundVariable x)
| Fun (x,e) -> Fun (x,e)
| App (e1,e2) ->
(match eval e1 with
| Fun (x,e) ->
let v = eval e2 in
substitute e x v

```
pattern as \(x\)
match the pattern and binds \(x\) to value
```

            | (Rec (f,x,e)) as f_val ->
                let v = eval e2 in
                let body = substitute f_val f
                            (substitute v x e) in
        eval body
        | _ -> raise TypeError)
    ```

\section*{More Evaluation}
```

(rec fact n = if n <= 1 then 1 else n * fact(n-1)) 3
-->
if 3<1 then 1 else
3* (rec fact n = if ... then ... else ...) (3-1)
3* (rec fact n = if ... ) (3-1)
-->
3 * (rec fact n = if ... ) 2
3* (if 2 <= 1 then 1 else 2 * (rec fact n = ..)(2-1))
-->
3* (2 * (rec fact n = ...)(2-1))
-->
3* (2* (rec fact n = ..)(1))
-->
3* 2 * (if 1 <= 1 then 1 else 1 * (rec fact ...)(1-1))
-->
3*2*1

```

\section*{Exercise 1}
(a) What is the result of the following substitution? In your answer, rename variables so you have as many unique variable names as possible.
(let \(\mathrm{g}=\operatorname{rec} \mathrm{f}(\mathrm{x})=\operatorname{let} \mathrm{g}=\mathrm{fun} \mathrm{x}->\mathrm{g}(\mathrm{f} \mathrm{x})\) in 0 in \(\mathrm{g}(\) fun \(\mathrm{g}->\mathrm{g}))[(f u n g->\mathrm{g}+1) / \mathrm{g}]\)
(b) What are the free variables of the following expression?
\[
\text { let } g=\operatorname{rec} f(x)=\text { let } g=\text { fun } x->g(f x) \text { in } 0 \text { in } g(f u n g->g)
\]
(c) What are the free variables of your answer to (a)? More generally, how are the free variables of the expression e and the expression (e[v/x]) related?

\section*{Exercise 2}

Try extending the language and its evaluation system with:
- booleans (true, false, and, or, not, if)
- pairs (with pair creation and field extraction operations)```

