
Implementing OCaml in OCaml
Part 1: Representing Program Syntax

Speaker: David Walker
COS 326

Princeton University

slides copyright 2020 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes

Defining Programming Language Semantics 2

To write a program, you have to know how the language works.

Semantics: The study of “how a programming language works”

Defining Programming Language Semantics 3

To write a program, you have to know how the language works.

Semantics: The study of “how a programming language works”

Methods for defining program semantics:
– Operational: show how to rewrite program expressions step-by-step

until you end up with a value
• we’ve done some of this already

– Denotational: how interpret a program in a different language that is
well understood
• we aren’t going to do much of this – see COS 510

– Equational: specify the equal programs
• we’ll do more of this later & use this semantics to prove things about

our programs
– Axiomatic: provide (other kinds of) reasoning rules about programs

Defining Program Semantics
In this series of lectures, we’ll focus on operational definitions

We’ll use the following techniques to communicate:
1. examples (good for intuition, but highly incomplete)

– this doesn’t get at the corner cases
2. an interpreter program written in OCaml
3. mathematical notation

4

Defining Program Semantics
In this series of lectures, we’ll focus on operational definitions

We’ll use the following techniques to communicate:
1. examples (good for intuition, but highly incomplete)

– this doesn’t get at the corner cases
2. an interpreter program written in OCaml
3. mathematical notation

5

Implementing an Interpreter

let x = 3 in
x + x

Let (“x”,
Num 3,
Binop(Plus, Var “x”, Var “x”))

Num 6

6

Parsing

Evaluation

Pretty
Printing

text file containing program
as a sequence of characters

data structure representing program

data structure representing
result of evaluation

text file/stdout
containing formatted output

6

REPRESENTING SYNTAX

7

Representing Syntax

Program syntax is a complicated tree-like data structure.

8

Representing Syntax 9

Program syntax is a complicated tree-like data structure.

let x = 3 in
x + x

Syntax Trees 10

let x = 3 in x + x

let x = 3 in x + x

exp

var var

exp

op

exp

var num

exp

exp

This is the parse tree.
Useful for some purposes, but

for the semantics it’s too much information.

Abstract Syntax Tree (AST) 11

Don’t need all the “punctuation” (key words, white space).

let x = 3 in
x + x

let

x 3 +

x x

Representing Syntax

More generally each let expression has 3 parts:

12

let = in

Representing Syntax

More generally each let expression has 3 parts:

And you can represent a let expression using a tree like this:

13

let = in

let

Representing Syntax

More generally each let expression has 3 parts:

And you can represent a let expression using a tree like this:

14

let = in

let

this part has to
contain a variable,
like x

these parts contain
arbitrary subexpressions

Representing Syntax

More generally each let expression has 3 parts:

And you create complicated programs by nesting let expressions
(or any other expression) recursively inside one another:

15

let = in

let

let

let

x 4 +

2x

OCaml for the Win

Functional programming languages have sometimes been called
“domain-specific languages for compiler writers”

Datatypes are amazing for representing complicated tree-like
structures and that is exactly what a program is.

Use a different constructor for every different sort of expression
• one constructor for variables
• one constructor for let expressions
• one constructor for numbers
• one constructor for binary operators, like add
• ...

16

Aside: Java for the loss

Languages like Java, that are based exclusively around heavy-
weight class tend to be vastly more verbose when trying to
represent syntax trees:
• one whole class for each different kind of syntax
• one class for variables
• one class for let expressions
• one class for numbers ...

In addition, writing traversals over the syntax is annoying,
because your code is spread over N different classes (using a
visitor pattern) rather than in one place.

17

Aside: Java for the loss

Languages like Java, that are based exclusively around heavy-
weight class tend to be vastly more verbose when trying to
represent syntax trees:
• one whole class for each different kind of syntax
• one class for variables
• one class for let expressions
• one class for numbers ...

In addition, writing traversals over the syntax is annoying,
because your code is spread over N different classes (using a
visitor pattern) rather than in one place.

18

SCORE: OCAML 3.8, JAVA 0

(C: who cares?)

A datatype for simple OCaml expressions:

type variable = string

type op = Plus | Minus | Times | …

type exp =
| Int of int
| Op of exp * op * exp
| Var of variable
| Let of variable * exp * exp

type value = exp

Making These Ideas Precise 19

Making These Ideas Precise 20

A datatype for simple OCaml expressions:

type variable = string
type op = Plus | Minus | Times | …
type exp =
| Int of int
| Op of exp * op * exp
| Var of variable
| Let of variable * exp * exp

type value = exp

let e1 = Int 3

Making These Ideas Precise 21

type variable = string
type op = Plus | Minus | Times | …
type exp =
| Int of int
| Op of exp * op * exp
| Var of variable
| Let of variable * exp * exp

type value = exp

let e1 = Int 3
let e2 = Int 17

A datatype for simple OCaml expressions:

Making These Ideas Precise 22

type variable = string
type op = Plus | Minus | Times | …
type exp =
| Int of int
| Op of exp * op * exp
| Var of variable
| Let of variable * exp * exp

type value = exp

let e1 = Int 3
let e2 = Int 17
let e3 = Op (e1, Plus, e2)

represents “3 + 17”

A datatype for simple OCaml expressions:

Making These Ideas Precise 23

We can represent the OCaml program:

let x = 30 in
let y =
(let z = 3 in
z*4)

in
y+y

as an exp value:

Let(“x”, Int 30,
Let(“y”,

Let(“z”, Int 3,
Op(Var “z”, Times, Int 4)),

Op(Var “y”, Plus, Var “y”)

This is called an
abstract syntax tree (AST)

This is called
concrete syntax
(concrete syntax pertains to parsing)

Let(“x”,Int 30,
Let(“y”,Let(“z”,Int 3,

Op(Var “z”, Times, Int 4)),
Op(Var “y”, Plus, Var “y”)

ASTs as ... Trees 24

let

x 30 let

y let +

z 3 *
y y

z 4

Visualizing the
OCaml expression
as a tree

Let(“x”,Int 30,
Let(“y”,Let(“z”,Int 3,

Op(Var “z”, Times, Int 4)),
Op(Var “y”, Plus, Var “y”)

ASTs as ... Trees 25

let

x 30 let

y let +

z 3 *
y y

z 4

Now that we have
a data structure to
represent programs,
we can write other
programs to analyze
them.

Free vs Bound Variables 28

let

x 30 +

x y

let x = 30 in
x+y

Free vs Bound Variables 29

let

x 30 +

x y

let x = 30 in
x+y

this use of x is bound here

Free vs Bound Variables 30

let

x 30 +

x y

let x = 30 in
x+y

this use of y is free

we say: "y is a free variable in the expression (let x = 30 in x+y)"

Other Examples 31

fun z -> z + y z is bound
y is a free variable

match x with
(y,z) -> y + z + w

x, w are free variables
y, z are bound

let rec f x =
match x with
[] -> y

| hd:tl -> hd::f tl

y is a free variable
f, x, hd, tl are all bound

A Few More Examples
What are the free variables of the following expressions?

if true then x else y

(fun x y ->
match x with
[] -> 0

| hd::tl -> w + hd)[] z

x and y

w and z

The free variables of an expression
do not depend upon the flow of control.

Abstract Syntax Trees 33

Given a variable occurrence, we can find where it is bound by …

let

a 30 let

a let +

a 3 *

let a = 30 in
let a =
(let a = 3 in a*4)

in
a+a

a a

a 4

Abstract Syntax Trees 34

crawling up the tree to the nearest enclosing let…

let

a 30 let

a let +

a 3 *
a a

a 4

let a = 30 in
let a =
(let a = 3 in a*4)

in
a+a

Abstract Syntax Trees 35

crawling up the tree to the nearest enclosing let…

let

a 30 let

a let +

a 3 *
a a

a 4

let a = 30 in
let a =
(let a = 3 in a*4)

in
a+a

Abstract Syntax Trees 36

crawling up the tree to the nearest enclosing let…

let

a 30 let

a let +

a 3 *
a a

a 4

let a = 30 in
let a =
(let a = 3 in a*4)

in
a+a

Abstract Syntax Trees 37

and checking if the “let” binds the same variable – if so, we’ve
found the nearest enclosing definition. If not, we keep going up.

let

a 30 let

a let +

a 3 *
a a

a 4

let a = 30 in
let a =
(let a = 3 in a*4)

in
a+a

Abstract Syntax Trees 38

We can also systematically rename the variables so that it’s not so
confusing. Recall systematic renaming is called alpha-conversion

let

a 30 let

a let +

a 3 *
a a

a 4

let a = 30 in
let a =
(let a = 3 in a*4)

in
a+a

Abstract Syntax Trees 39

Start with a let, and pick a fresh variable name, say “x”

let

a 30 let

a let +

a 3 *
a a

a 4

let a = 30 in
let a =
(let a = 3 in a*4)

in
a+a

Abstract Syntax Trees 40

Rename the binding occurrence from “a” to “x”.

let

x 30 let

a let +

a 3 *
a a

a 4

let x = 30 in
let a =
(let a = 3 in a*4)

in
a+a

Abstract Syntax Trees 41

Then rename all of the occurrences of the variables that this let
binds.

let

x 30 let

a let +

a 3 *
a a

a 4

let x = 30 in
let a =
(let a = 3 in a*4)

in
a+a

Abstract Syntax Trees 42

There are none in this case!

let

x 30 let

a let +

a 3 *
a a

a 4

These a’s are
bound by
this let.

let x = 30 in
let a =
(let a = 3 in a*4)

in
a+a

Abstract Syntax Trees 43

There are none in this case!

let

x 30 let

a let +

a 3 *
a a

a 4

This a is
bound by

this let

let x = 30 in
let a =
(let a = 3 in a*4)

in
a+a

Abstract Syntax Trees 44

Let’s do another let, renaming “a” to “y”.

let

x 30 let

a let +

a 3 *
a a

a 4

let x = 30 in
let a =
(let a = 3 in a*4)

in
a+a

Abstract Syntax Trees 45

Let’s do another let, renaming “a” to “y”.

let

x 30 let

y let +

a 3 *
y y

a 4

let x = 30 in
let y =
(let a = 3 in a*4)

in
y+y

Implementing Renaming 46

type var = string
type op = Plus | Minus
type exp =
| Int of int
| Op of exp * op * exp
| Var of var
| Let of var * exp * exp

let rec rename (x:var) (y:var) (e:exp) : exp =

Implementing Renaming 47

type var = string
type op = Plus | Minus
type exp =
| Int of int
| Op of exp * op * exp
| Var of var
| Let of var * exp * exp

let rec rename (x:var) (y:var) (e:exp) : exp =
match e with
| Op (e1, op, e2) ->

| Var z ->

| Int i ->

| Let (z,e1,e2) ->

Implementing Renaming 48

type var = string
type op = Plus | Minus
type exp =
| Int of int
| Op of exp * op * exp
| Var of var
| Let of var * exp * exp

let rec rename (x:var) (y:var) (e:exp) : exp =
match e with
| Op (e1, op, e2) ->

Op (rename x y e1, op, rename x y e2)
| Var z ->

| Int i ->

| Let (z,e1,e2) ->

Implementing Renaming 49

type var = string
type op = Plus | Minus
type exp =
| Int of int
| Op of exp * op * exp
| Var of var
| Let of var * exp * exp

let rec rename (x:var) (y:var) (e:exp) : exp =
match e with
| Op (e1, op, e2) ->

Op (rename x y e1, op, rename x y e2)
| Var z ->

if z = x then Var y else e
| Int i ->

| Let (z,e1,e2) ->

Implementing Renaming 50

type var = string
type op = Plus | Minus
type exp =
| Int of int
| Op of exp * op * exp
| Var of var
| Let of var * exp * exp

let rec rename (x:var) (y:var) (e:exp) : exp =
match e with
| Op (e1, op, e2) ->

Op (rename x y e1, op, rename x y e2)
| Var z ->

if z = x then Var y else e
| Int i ->

Int i
| Let (z,e1,e2) ->

Implementing Renaming 51

type var = string
type op = Plus | Minus
type exp =
| Int of int
| Op of exp * op * exp
| Var of var
| Let of var * exp * exp

let rec rename (x:var) (y:var) (e:exp) : exp =
match e with
| Op (e1, op, e2) ->

Op (rename x y e1, op, rename x y e2)
| Var z ->

if z = x then Var y else e
| Int i ->

Int i
| Let (z,e1,e2) ->

Let (z, rename x y e1,
if z = x then e2 else rename x y e2)

Exercise
Here’s the syntax of our little language:

Extending the abstract syntax of expressions. Extend the
implementation of the renaming function.
• (Easy) Booleans true and false, if statements, and operations

like and, or, not
• (Harder) Pairs and patterns “let (x,y) = e1 in e2”

52

type var = string
type op = Plus | Minus
type exp =
| Int of int
| Op of exp * op * exp
| Var of var
| Let of var * exp * exp

