Implementing OCaml in OCaml Part 1: Representing Program Syntax

Speaker: David Walker
 COS 326

Princeton University
slides copyright 2020 David Walker and Andrew ARpel permission granted to reuse these slides for non-commercial educational purposes

Defining Programming Language Semantics

To write a program, you have to know how the language works.

Semantics: The study of "how a programming language works"

Defining Programming Language Semantics

To write a program, you have to know how the language works.

Semantics: The study of "how a programming language works"

Methods for defining program semantics:

- Operational: show how to rewrite program expressions step-by-step until you end up with a value
- we've done some of this already
- Denotational: how interpret a program in a different language that is well understood
- we aren't going to do much of this - see COS 510
- Equational: specify the equal programs
- we'll do more of this later \& use this semantics to prove things about our programs
- Axiomatic: provide (other kinds of) reasoning rules about programs

Defining Program Semantics

In this series of lectures, we'll focus on operational definitions

We'll use the following techniques to communicate:

1. examples (good for intuition, but highly incomplete)

- this doesn't get at the corner cases

2. an interpreter program written in OCaml
3. mathematical notation

Defining Program Semantics

In this series of lectures, we'll focus on operational definitions

We'll use the following techniques to communicate:

1. examples (good for intuition, but highly incomplete)

- this doesn't get at the corner cases

2. an interpreter program written in OCaml
3. mathematical notation

Implementing an Interpreter

text file containing program
as a sequence of characters

$$
\text { let } x=3 \text { in }
$$

$\mathrm{x}+\mathrm{x}$
data structure representing program

```
Let (" }x\mathrm{ ",
    Num 3,
    Binop(Plus, Var "x", Var "x"))
```

data structure representing result of evaluation

Evaluation

text file/stdout containing formatted output

REPRESENTING SYNTAX

Representing Syntax

Program syntax is a complicated tree-like data structure.

Representing Syntax

Program syntax is a complicated tree-like data structure.

```
let x=3 in
x + X
```


Syntax Trees

This is the parse tree.
Useful for some purposes, but for the semantics it's too much information.

Abstract Syntax Tree (AST)

Don't need all the "punctuation" (key words, white space).

$$
\begin{aligned}
& \text { let } x=3 \text { in } \\
& x+x
\end{aligned}
$$

Representing Syntax

More generally each let expression has 3 parts:

$$
\text { let } \square=\square \text { in }
$$

Representing Syntax

More generally each let expression has 3 parts:

$$
\text { let } \square=\square \text { in }
$$

And you can represent a let expression using a tree like this:

Representing Syntax

More generally each let expression has 3 parts:

$$
\text { let } \square=\square \text { in }
$$

And you can represent a let expression using a tree like this:

contain a variable, like x

Representing Syntax

More generally each let expression has 3 parts:

$$
\text { let } \square=\square \text { in }
$$

And you create complicated programs by nesting let expressions (or any other expression) recursively inside one another:

OCaml for the Win

Functional programming languages have sometimes been called "domain-specific languages for compiler writers"

Datatypes are amazing for representing complicated tree-like structures and that is exactly what a program is.

Use a different constructor for every different sort of expression

- one constructor for variables
- one constructor for let expressions
- one constructor for numbers
- one constructor for binary operators, like add
- ...

Aside: Java for the loss

Languages like Java, that are based exclusively around heavyweight class tend to be vastly more verbose when trying to represent syntax trees:

- one whole class for each different kind of syntax
- one class for variables
- one class for let expressions
- one class for numbers ...

In addition, writing traversals over the syntax is annoying, because your code is spread over N different classes (using a visitor pattern) rather than in one place.

Aside: Java for the loss

Languages like Java, that are based exclusively around heavyweight class tend to be vastly more verbose wen trying to represent syntax trees:

- one whole \downarrow rs for each
- one class for

SCORE: OCAML 3.8, JAVA 0

- one ci

Making These Ideas Precise

A datatype for simple OCaml expressions:

```
type variable = string
type op = Plus | Minus | Times | ...
type exp =
    | Int of int
    | Op of exp * op * exp
    | Var of variable
    | Let of variable * exp * exp
type value = exp
```


Making These Ideas Precise

A datatype for simple OCaml expressions:

```
type variable = string
type op = Plus | Minus | Times | ...
type exp =
    | Int of int
    | Op of exp * op * exp
    | Var of variable
    | Let of variable * exp * exp
type value = exp
let e1 = Int 3
```


Making These Ideas Precise

A datatype for simple OCaml expressions:

```
type variable = string
type op = Plus | Minus | Times | ...
type exp =
    | Int of int
    | Op of exp * op * exp
    | Var of variable
    | Let of variable * exp * exp
type value = exp
let e1 = Int 3
let e2 = Int 17
```


Making These Ideas Precise

A datatype for simple OCaml expressions:

```
type variable = string
type op = Plus | Minus | Times | ...
type exp =
    | Int of int
    | Op of exp * op * exp
    | Var of variable
    | Let of variable * exp * exp
type value = exp
let el = Int 3
let e2 = Int 17
let e3 = Op (e1, Plus, e2)
    represents " }3+17\mathrm{ "
```


Making These Ideas Precise

We can represent the OCaml program:

```
let }\textrm{x}=30\mathrm{ in
    let y =
        (let z = 3 in
        z*4)
    in
    y+y
```

This is called concrete syntax (concrete syntax pertains to parsing)

This is called an abstract syntax tree (AST)
as an exp value:

$$
\begin{gathered}
\text { Let ("x", Int 30, } \\
\text { Let ("y", } \\
\text { Let ("z", Int 3, } \\
\text { Op(Var "z", Times, Int 4)), } \\
\text { Op(Var " } y \text { ", Plus, Var " } y \text { ") }
\end{gathered}
$$

ASTs as ... Trees

Let ("x", Int 30,
Let ("y", Let("z", Int 3, Op (Var "z", Times, Int 4)),
Op(Var " Y ", Plus, Var " $y^{\prime \prime}$)

ASTs as ... Trees

Let("x", Int 30,
Let ("y", Let("z", Int 3, Op (Var "z", Times, Int 4)),
Op(Var " Y ", Plus, Var " $y^{\prime \prime}$)

Now that we have a data structure to represent programs, we can write other programs to analyze them.

Free vs Bound Variables

$$
\begin{aligned}
& \text { let } x=30 \text { in } \\
& x+y
\end{aligned}
$$

Free vs Bound Variables

this use of x is bound here

Free vs Bound Variables

we say: " y is a free variable in the expression (let $\mathrm{x}=30$ in x,$)^{1+1)}$)

Other Examples

x, w are free variables
y, z are bound

```
let rec f x =
    match x with
        [] -> y
    | hd:tl -> hd::f tl
```

y is a free variable
$\mathrm{f}, \mathrm{x}, \mathrm{hd}, \mathrm{tl}$ are all bound

A Few More Examples

What are the free variables of the following expressions?

```
if true then x else y
```

```
(fun x y ->
    match x with
        [] -> 0
    | hd::tl -> w + hd) [] z
```

The free variables of an expression do not depend upon the flow of control.

Abstract Syntax Trees

Given a variable occurrence, we can find where it is bound by ...

```
let a = 30 in
let a =
    (let a = 3 in a*4)
in
a+a
```


Abstract Syntax Trees

crawling up the tree to the nearest enclosing let...

```
let a = 30 in
let a =
    (let a = 3 in a*4)
in
a+a
```


Abstract Syntax Trees

crawling up the tree to the nearest enclosing let...

$$
\begin{aligned}
& \text { let } a=30 \text { in } \\
& \text { let } a= \\
& \quad(\text { let } a=3 \text { in } a * 4) \\
& \text { in } \\
& \text { a+a }
\end{aligned}
$$

Abstract Syntax Trees

crawling up the tree to the nearest enclosing let...

```
let a = 30 in
let a =
    (let a = 3 in a*4)
in
a+a
```


Abstract Syntax Trees

and checking if the "let" binds the same variable - if so, we've found the nearest enclosing definition. If not, we keep going up.

```
let a = 30 in
let a =
    (let a = 3 in a*4)
in
a+a
```


Abstract Syntax Trees

We can also systematically rename the variables so that it's not so confusing. Recall systematic renaming is called alpha-conversion

```
let a = 30 in
let a =
    (let a = 3 in a*4)
in
a+a
```


Abstract Syntax Trees

Start with a let, and pick a fresh variable name, say " x "

```
let a = 30 in
let a =
    (let a = 3 in a*4)
in
a+a
```


Abstract Syntax Trees

Rename the binding occurrence from " a " to " x ".

```
let x = 30 in
let a =
    (let a = 3 in a*4)
in
a+a
```


Abstract Syntax Trees

Then rename all of the occurrences of the variables that this let binds.

```
let x = 30 in
let a =
    (let a = 3 in a*4)
in
a+a
```


Abstract Syntax Trees

There are none in this case!

```
let x = 30 in
let a =
    (let a = 3 in a*4)
in
a+a
```


Abstract Syntax Trees

There are none in this case!

```
let x = 30 in
let a =
    (let a = 3 in a*4)
in
a+a
```


Abstract Syntax Trees

Let's do another let, renaming " a " to " y ".

$$
\begin{aligned}
& \text { let } x=30 \text { in } \\
& \text { let } a= \\
& \quad(\text { let } a=3 \text { in } a * 4) \\
& \text { in } \\
& a+a
\end{aligned}
$$

Abstract Syntax Trees

Let's do another let, renaming " a " to " y ".

$$
\begin{aligned}
& \text { let } x=30 \text { in } \\
& \text { let } y= \\
& \quad(\text { let } a=3 \text { in } a * 4) \\
& \text { in } \\
& y+y
\end{aligned}
$$

Implementing Renaming

```
type var = string
type op = Plus | Minus
type exp =
    | Int of int
    Op of exp * op * exp
    Var of var
    Let of var * exp * exp
```

let rec rename (x:var) (y:var) (e:exp) : exp =

Implementing Renaming

```
type var = string
type op = Plus | Minus
type exp =
    | Int of int
    | Op of exp * op * exp
    Var of var
    Let of var * exp * exp
```

let rec rename (x:var) (y:var) (e:exp) : exp = match e with
| Op (el, op, e2) ->
| Var z ->
| Int i ->
| Let (z,e1,e2) ->

Implementing Renaming

```
type var = string
type op = Plus | Minus
type exp =
    Int of int
    | Op of exp * op * exp
    Var of var
    Let of var * exp * exp
```

let rec rename (x:var) (y:var) (e:exp) : exp = match e with
| Op (el, op, eZ) ->
Op (rename x y el, op, rename x y eZ)
| Var z ->
| Int i ->
| Let (z,e1,e2) ->

Implementing Renaming

```
type var = string
type op = Plus | Minus
type exp =
    Int of int
    Op of exp * op * exp
    Var of var
    Let of var * exp * exp
```

let rec rename (x:var) (y:var) (e:exp) : exp = match e with
| Op (el, op, eZ) ->
Op (rename x y el, op, rename x y eq)
| Var z ->
if $z=x$ then Var y else e
| Int i ->
| Let (z,e1,e2) ->

Implementing Renaming

```
type var = string
type op = Plus | Minus
type exp =
    Int of int
    Op of exp * op * exp
    Var of var
    Let of var * exp * exp
```

let rec rename (x:var) (y:var) (e:exp) : exp = match e with
| Op (el, op, eZ) ->
Op (rename x y el, op, rename x y eq)
| Var z ->
if $z=x$ then Var y else e
| Int i ->
Int i
| Let (z,e1,e2) ->

Implementing Renaming

```
type var = string
type op = Plus | Minus
type exp =
    Int of int
    Op of exp * op * exp
    Var of var
    Let of var * exp * exp
```

let rec rename (x:var) (y:var) (e:exp) : exp =
match e with
| Op (el, op, eZ) ->
Op (rename x y el, op, rename x y eZ)
| Var z ->
if $z=x$ then Var y else e
| Int i ->
Int i
| Let (z,e1,e2) ->
Let $(z, r e n a m e ~ x ~ y ~ e 1, ~$
if $z=x$ then eq else rename $x \quad y$ eZ)

Exercise

Here's the syntax of our little language:

```
type var = string
type op = Plus | Minus
type exp =
    | Int of int
    | Op of exp * op * exp
    Var of var
    | Let of var * exp * exp
```

Extending the abstract syntax of expressions. Extend the implementation of the renaming function.

- (Easy) Booleans true and false, if statements, and operations like and, or, not
- (Harder) Pairs and patterns "let (x, y) = e1 in e2"

