
Inductive Datatypes

COS 326
Speaker: Andrew Appel

Princeton University

slides copyright 2017 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes

type key = string
type value = int

type tree =
Leaf

| Node of key * value * tree * tree

Inductive data types
• We can use data types to define inductive data
• A binary tree is:

– a Leaf containing no data
– a Node containing a key, a value, a left subtree and a right subtree

2

type key = int
type value = string

type tree =
Leaf

| Node of key * value * tree * tree

Inductive data types

let rec insert (t:tree) (k:key) (v:value) : tree =

3

type key = int
type value = string

type tree =
Leaf

| Node of key * value * tree * tree

Inductive data types

let rec insert (t:tree) (k:key) (v:value) : tree =
match t with
| Leaf ->
| Node (k', v', left, right) ->

Again, the type definition
specifies the cases you must
consider

4

type key = int
type value = string

type tree =
Leaf

| Node of key * value * tree * tree

Inductive data types

let rec insert (t:tree) (k:key) (v:value) : tree =
match t with
| Leaf -> Node (k, v, Leaf, Leaf)
| Node (k', v', left, right) ->

5

type key = int
type value = string

type tree =
Leaf

| Node of key * value * tree * tree

Inductive data types

let rec insert (t:tree) (k:key) (v:value) : tree =
match t with
| Leaf -> Node (k, v, Leaf, Leaf)
| Node (k', v', left, right) ->

if k < k' then
Node (k', v', insert left k v, right)

else if k > k' then
Node (k', v', left, insert right k v)

else
Node (k, v, left, right)

6

type key = int
type value = string

type tree =
Leaf

| Node of key * value * tree * tree

Inductive data types

let rec insert (t:tree) (k:key) (v:value) : tree =
match t with
| Leaf -> Node (k, v, Leaf, Leaf)
| Node (k', v', left, right) ->

if k < k' then
Node (k', v', insert left k v, right)

else if k > k' then
Node (k', v', left, insert right k v)

else
Node (k, v, left, right)

7

type key = int
type value = string

type tree =
Leaf

| Node of key * value * tree * tree

Inductive data types

let rec insert (t:tree) (k:key) (v:value) : tree =
match t with
| Leaf -> Node (k, v, Leaf, Leaf)
| Node (k', v', left, right) ->

if k < k' then
Node (k', v', insert left k v, right)

else if k > k' then
Node (k', v', left, insert right k v)

else
Node (k, v, left, right)

8

Inductive data types: Another Example
• Recall, we used the type "int" to represent natural numbers

– but that was kind of broken: it also contained negative numbers
– we had to use a dynamic test to guard entry to a function:

– it would be nice if there was a way to define the natural
numbers exactly, and use OCaml's type system to guarantee no
client ever attempts to double a negative number

let double (n : int) : int =
if n < 0 then
raise (Failure "negative input!")

else
double_nat n

10

Inductive data types
• Recall, a natural number n is either:

– zero, or
– m + 1

• We use a data type to represent this definition exactly:

11

Inductive data types
• Recall, a natural number n is either:

– zero, or
– m + 1

• We use a data type to represent this definition exactly:

type nat = Zero | Succ of nat

12

Inductive data types
• Recall, a natural number n is either:

– zero, or
– m + 1

• We use a data type to represent this definition exactly:

type nat = Zero | Succ of nat

let rec nat_to_int (n : nat) : int =
match n with
Zero -> 0

| Succ n -> 1 + nat_to_int n

13

Inductive data types
• Recall, a natural number n is either:

– zero, or
– m + 1

• We use a data type to represent this definition exactly:

type nat = Zero | Succ of nat

let rec nat_to_int (n : nat) : int =
match n with
Zero -> 0

| Succ n -> 1 + nat_to_int n

let rec double_nat (n : nat) : nat =
match n with
| Zero -> Zero
| Succ m -> Succ (Succ(double_nat m))

14

Lists!
• Recall, a list is either:

– nil, or
– the cons of a head value with a tail list

• We use a data type to represent this definition exactly:

type ’a list = [] | :: of ’a * ’a list

15

Summary
• OCaml data types: a powerful mechanism for defining

complex data structures:
– They are precise

• contain exactly the elements you want, not more elements
– They are general

• recursive, non-recursive (mutually recursive and polymorphic)
– The type checker helps you detect errors

• missing cases in your functions

16

