
OCaml Datatypes

COS 326
Speaker: Andrew Appel

Princeton University

slides copyright 2017 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes

OCaml So Far
• We have seen a number of basic types:

– int
– float
– char
– string
– bool

• We have seen a few structured types:
– pairs
– tuples
– options
– lists

• In this lecture, we will see some more general ways to define
our own new types and data structures

2

Type Abbreviations
• We have already seen some type abbreviations:

• These abbreviations can be helpful documentation:

• But they add nothing of substance to the language
– they are equal in every way to an existing type

type point = float * float

let distance (p1:point) (p2:point) : float =
let square x = x *. x in
let (x1,y1) = p1 in
let (x2,y2) = p2 in
sqrt (square (x2 -. x1) +. square (y2 -. y1))

3

Type Abbreviations
• We have already seen some type abbreviations:

• As far as OCaml is concerned, you could have written:

• Since the types are equal, you can substitute the definition for
the name wherever you want
– we have not added any new data structures

type point = float * float

let distance (p1:float*float)
(p2:float*float) : float =

let square x = x *. x in
let (x1,y1) = p1 in
let (x2,y2) = p2 in
sqrt (square (x2 -. x1) +. square (y2 -. y1))

4

DATA TYPES

5

Data types
• OCaml provides a general mechanism called a data type for

defining new data structures that consist of many alternatives

type my_bool = Tru | Fal

a value with type my_bool
is one of two things:
• Tru, or
• Fal

read the "|" as "or"

6

Data types
• OCaml provides a general mechanism called a data type for

defining new data structures that consist of many alternatives

type my_bool = Tru | Fal

a value with type my_bool
is one of two things:
• Tru, or
• Fal

read the "|" as "or"

Tru and Fal are called
"constructors"

7

Data types
• OCaml provides a general mechanism called a data type for

defining new data structures that consist of many alternatives

type my_bool = Tru | Fal

type color = Blue | Yellow | Green | Red

there's no need to stop
at 2 cases; define as many
alternatives as you want

8

Data types
• OCaml provides a general mechanism called a data type for

defining new data structures that consist of many alternatives

• Creating values:

type my_bool = Tru | Fal

type color = Blue | Yellow | Green | Red

let b1 : my_bool = Tru
let b2 : my_bool = Fal
let c1 : color = Yellow
let c2 : color = Red

use constructors to create values

9

Data types

• Using data type values:

type color = Blue | Yellow | Green | Red

let c1 : color = Yellow
let c2 : color = Red

let print_color (c:color) : unit =
match c with
| Blue ->
| Yellow ->
| Green ->
| Red ->

use pattern matching to
determine which color
you have; act accordingly

10

Data types

• Using data type values:

type color = Blue | Yellow | Green | Red

let c1 : color = Yellow
let c2 : color = Red

let print_color (c:color) : unit =
match c with
| Blue -> print_string "blue"
| Yellow -> print_string "yellow"
| Green -> print_string "green"
| Red -> print_string "red"

11

Data types

• Using data type values:

type color = Blue | Yellow | Green | Red

let c1 : color = Yellow
let c2 : color = Red

let print_color (c:color) : unit =
match c with
| Blue -> print_string "blue"
| Yellow -> print_string "yellow"
| Green -> print_string "green"
| Red -> print_string "red"

Why not just use strings to represent colors instead of defining a new type?

12

Data types

type color = Blue | Yellow | Green | Red

let print_color (c:color) : unit =
match c with
| Blue -> print_string "blue"
| Yellow -> print_string "yellow"
| Red -> print_string "red"

Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
Green

oops!:

13

Data types

type color = Blue | Yellow | Green | Red

let print_color (c:color) : unit =
match c with
| Blue -> print_string "blue"
| Yellow -> print_string "yellow"
| Red -> print_string "red"

Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
Green

oops!:

OCaml's datatype mechanism allows you to create types
that contain precisely the values you want!

14

Data types

type color = Blue | Yellow | Green | Red

This is like an “enumeration” type in Pascal, C, Java, …

15

Data Types Can Carry Additional Values
• Data types are more than just enumerations of constants:

• Read as: a simple_shape is either:
– a Circle, which contains a pair of a point and float, or
– a Square, which contains a pair of a point and float

type point = float * float

type simple_shape =
Circle of point * float

| Square of point * float

(x,y)
s (x,y)

r

16

Data Types Can Carry Additional Values
• Data types are more than just enumerations of constants:

type point = float * float

type simple_shape =
Circle of point * float

| Square of point * float

let origin : point = (0.0, 0.0)

let circ1 : simple_shape = Circle (origin, 1.0)
let circ2 : simple_shape = Circle ((1.0, 1.0), 5.0)
let square : simple_shape = Square (origin, 2.3)

17

Data Types Can Carry Additional Values
• Data types are more than just enumerations of constants:

type point = float * float

type simple_shape =
Circle of point * float

| Square of point * float

let simple_area (s:simple_shape) : float =
match s with
| Circle (_, radius) -> 3.14 *. radius *. radius
| Square (_, side) -> side *. side

18

Compare
• Data types are more than just enumerations of constants:

type point = float * float

type simple_shape =
Circle of point * float

| Square of point * float

let simple_area (s:simple_shape) : float =
match s with
| Circle (_, radius) -> 3.14 *. radius *. radius
| Square (_, side) -> side *. side

type my_shape = point * float

let simple_area (s:my_shape) : float =
(3.14 *. radius *. radius) ?? or ?? (side *. side)

19

More General Shapes

r1
r2

Square s =

Ellipse (r1, r2) =

s2
s1RtTriangle (s1, s2) =

v2
v1 v3

v4v5

Polygon [v1; ...;v5] =

type point = float * float

type shape =
Square of float

| Ellipse of float * float
| RtTriangle of float * float
| Polygon of point list

s

20

More General Shapes

type point = float * float
type radius = float
type side = float

type shape =
Square of side

| Ellipse of radius * radius
| RtTriangle of side * side
| Polygon of point list

Type abbreviations can
aid readability

r1
r2

Square s =

Ellipse (r1, r2) =

s2
s1RtTriangle (s1, s2) =

v2
v1 v3

v4v5

RtTriangle [v1; ...;v5] =

s

21

More General Shapes

type point = float * float
type radius = float
type side = float

type shape =
Square of side

| Ellipse of radius * radius
| RtTriangle of side * side
| Polygon of point list

let sq : shape = Square 17.0
let ell : shape = Ellipse (1.0, 2.0)
let rt : shape = RtTriangle (1.0, 1.0)
let poly : shape = Polygon [(0., 0.); (1., 0.); (0.; 1.)]

they are all shapes;
they are constructed in
different ways

Polygon builds a shape
from a list of points
(where each point is itself a pair)

Square builds a shape
from a single side

RtTriangle builds a shape
from a pair of sides

22

More General Shapes

type point = float * float
type radius = float
type side = float

type shape =
Square of side

| Ellipse of radius * radius
| RtTriangle of side * side
| Polygon of point list

let area (s : shape) : float =
match s with
| Square s ->
| Ellipse (r1, r2)->
| RtTriangle (s1, s2) ->
| Polygon ps ->

a data type also defines
a pattern for matching

23

Square carries a value
with type float so s is
a pattern for float values

RtTriangle carries a value
with type float * float
so (s1, s2) is a pattern
for that type

More General Shapes

type point = float * float
type radius = float
type side = float

type shape =
Square of side

| Ellipse of radius * radius
| RtTriangle of side * side
| Polygon of point list

let area (s : shape) : float =
match s with
| Square s -> s *. s
| Ellipse (r1, r2)-> pi *. r1 *. r2
| RtTriangle (s1, s2) -> s1 *. s2 /. 2.
| Polygon ps -> ???

a data type also defines
a pattern for matching

24

Computing Area
• How do we compute polygon area?
• For convex polygons:

– Case: the polygon has fewer than 3 points:
• it has 0 area! (it is a line or a point or nothing at all)

– Case: the polygon has 3 or more points:
• Compute the area of the triangle formed by the first 3 vertices
• Delete the second vertex to form a new polygon
• Sum the area of the triangle and the new polygon

v2
v1 v3

v4v5
= +

25

Computing Area
• How do we compute polygon area?
• For convex polygons:

– Case: the polygon has fewer than 3 points:
• it has 0 area! (it is a line or a point or nothing at all)

– Case: the polygon has 3 or more points:
• Compute the area of the triangle formed by the first 3 vertices
• Delete the second vertex to form a new polygon
• Sum the area of the triangle and the new polygon

• Note: This is a beautiful inductive algorithm:
– the area of a polygon with n points is computed in terms of a

smaller polygon with only n-1 points!

v2
v1 v3

v4v5
= +

26

How do you compute the area of a triangle?

Heron’s formula

Published by Heron of Alexandria (Egypt), 60 A.D.
Probably known to Archimedes (Syracuse, Sicily), 220 B.C.
Published independently by Qin Jiushao秦九韶, (Sichuan province) 1247

27

a b

c
Let 𝑠 =

𝑎 + 𝑏 + 𝑐
2

𝑎𝑟𝑒𝑎 = 𝑠(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐)

How do you compute the area of a triangle?
28

a b

c
Let 𝑠 =

𝑎 + 𝑏 + 𝑐
2

𝑎𝑟𝑒𝑎 = 𝑠(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐)

let tri_area (p1:point) (p2:point) (p3:point) : float =
let a = distance p1 p2 in
let b = distance p2 p3 in
let c = distance p3 p1 in
let s = 0.5 *. (a +. b +. c) in
sqrt (s *. (s -. a) *. (s -. b) *. (s -. c))

Computing Area

v2
v1 v3

v4v5
=

let area (s : shape) : float =
match s with
| Square s -> s *. s
| Ellipse (r1, r2)-> r1 *. r2
| RtTriangle (s1, s2) -> s1 *. s2 /. 2.
| Polygon ps -> poly_area ps

let poly_area (ps : point list) : float =
match ps with
| p1 :: p2 :: p3 :: tail ->

tri_area p1 p2 p3 +. poly_area (p1::p3::tail)
| _ -> 0.

= +

This pattern says the
list has at least 3 items

29

Summary

A datatype t has constructors c1 c2 c3 …

Each constructor may carry a value (like Square(s))
or be a constant constructor (like Green)

We build values of type t by applying constructors to values
(or by applying constant constructors to nothing)

We examine values of type t by pattern-matching.

30

