OCaml Datatypes

COS 326
Speaker: Andrew Appel
Princeton University

slides copyright 2017 David Walker and AndrewAQpel
permission granted to reuse these slides for non-commercial educational purposes

OCaml So Far

We have seen a number of basic types:
— int

— float

— char

— string

— bool

We have seen a few structured types:
— pairs

— tuples

— options

— lists

In this lecture, we will see some more general ways to define
our own new types and data structures

Type Abbreviations

* We have already seen some type abbreviations:

type point = float * float

 These abbreviations can be helpful documentation:

let distance (pl:point) (p2:point) : float
let square x = x *. X 1n
let (x1,yl) = pl 1in
let (x2,y2) = p2 1in
sgqrt (square (x2 -. x1) +. square (y2 -.

v1l))

* But they add nothing of substance to the language
— they are equal in every way to an existing type

Type Abbreviations

* We have already seen some type abbreviations:

type point = float * float

* As far as OCamlis concerned, you could have written:

let distance (pl:float*float)
(p2:float*float) : float =
let square x = x *. X 1n
let (x1,yl) = pl 1in
let (x2,y2) = p2 1in
sgrt (square (x2 -. x1) +. square (y2 -. yl))

* Since the types are equal, you can substitute the definition for
the name wherever you want

— we have not added any new data structures

DATA TYPES

Data types

 OCaml provides a general mechanism called a data type for
defining new data structures that consist of many alternatives

type my bool = Tru | Fal

a value with type my_bool
is one of two things:

* Tru, or

* Fal

read the "|" as "or"

Data types

 OCaml provides a general mechanism called a data type for
defining new data structures that consist of many alternatives

type my bool = Tru | Fal

Tru and Fal are called a value with type my_bool
"constructors" is one of two things:

* Tru, or

 Fal

read the "|" as "or"

Data types

OCaml provides a general mechanism called a data type for
defining new data structures that consist of many alternatives

type my bool = Tru | Fal

type color = Blue | Yellow | Green | Red

there's no need to stop
at 2 cases; define as many
alternatives as you want

Data types

OCaml provides a general mechanism called a data type for
defining new data structures that consist of many alternatives

type my bool = Tru | Fal

type color = Blue | Yellow | Green | Red
Creating values:

let bl my bool = Tru

let b2 my bool = Fal

let cl color = Yellow

let c2 color = Red “i\\

\

- use constructors to create values

Data types

type color = Blue | Yellow | Green
let ¢l : color = Yellow
let ¢c2 : color = Red

Red

Using data type values:

let print color (c:color) : unit =

match ¢ with
| Blue —->
| Yellow ->
| Green ->
| Red ->

N

use pattern matching to
determine which color
you have; act accordingly

10

Data types

type color = Blue | Yellow | Green | Red

let ¢l : color = Yellow
let ¢c2 : color Red

Using data type values:

let print color (c:color) : unit =
match ¢ with
| Blue -> print string "blue"
| Yellow -> print string "yellow"
| Green -> print string "green"
| Red -> print string "red"

11

Data types

type color = Blue | Yellow | Green | Red

let ¢l : color = Yellow
let ¢c2 : color Red

Using data type values:

let print color (c:color) : unit =
match ¢ with
| Blue -> print string "blue"
| Yellow -> print string "yellow"
| Green -> print string "green"
| Red -> print string "red"

Why not just use strings to represent colors instead of defining a new type?

12

Data types

type color = Blue | Yellow | Green | Red

oops!:

let print color (c:color) : unit =
match ¢ with
| Blue -> print string "blue"
| Yellow -> print string "yellow"
| Red -> print string "red"
N

Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
Green

13

[Data types

type color = Blue | Yellow | Green | Red

oops!:

let print color (c:color) : unit =
match ¢ with
| Blue -> print string "blue"
| Yellow -> print string "yellow"
| Red -> print string "red"
N

Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
Green

OCaml's datatype mechanism allows you to create types
that contain precisely the values you want!

14

Data types

type color = Blue | Yellow | Green | Red

This is like an “enumeration” type in Pascal, C, Java, ...

15

Data Types Can Carry Additional Values

» Data types are more than just enumerations of constants:

type point = float * float

type simple shape =
Circle of point * float
| Square of point *

float

 Read as: asimple_shape is either:

— a Circle, which contains a pair of a point and float, or

— a Square, which contains a pair of a point and float

(x,y)

s

16

Data Types Can Carry Additional Values

» Data types are more than just enumerations of constants:

type point = float * float

type simple shape =
Circle of point * float
*

| Square of point float

let origin : point = (0.0, 0.0)
let circl : simple shape = Circle
let circ2 : simple shape = Circle
let square : simple shape = Square

(origin,

1.0)

((1.0, 1.0),

(origin,

2.3)

5.

0)

Data Types Can Carry Additional Values

» Data types are more than just enumerations of constants:

type point = float * float

type simple shape =
Circle of point * float
*

| Square of point float
let simple area (s:simple shape) : float =
match s with
| Circle (, radius) -> 3.14 *. radius *. radius

| Square (, side) -> side *. side

[Compare

» Data types are more than just enumerations of constants:

type point = float * float

type simple shape
Circle of point * float
| Square of point * float

let simple area (s:simple shape) : float =
match s with
| Circle (, radius) -> 3.14 *. radius *. radius
| Square (, side) -> side *. side

type my shape = point * float

let simple area (s:my shape) : float =
(3.14 *. radius *. radius) ?? or ?° (side *. side)

20

More General Shapes

.

type point = float * float

type shape =
Square of float
| Ellipse of float * float
| RtTriangle of float * float
| Polygon of point list

Square s = } S RtTriangle (s1, s2) = s1

s2

v2

/_rz vl v3
Ellipse (r1, r2) =

Pol 1:...:v5] =
1 olygon [v1; ...;v5] ’

v5 v4

21

More Gen

eral Shapes

type point = float * float

| Ellipse of radius * radius
| RtTriangle of side * side
| Polygon of point list

type radius = floaté\\\\\\\\\\\\\\
type side = float —_—

type shape = é////////////////
Square of side Z//////

aid readability

Type abbreviations can

Square s = } S

/_rz
Ellipse (r1, r2) =

rl

RtTriangle (s1, s2) =

RtTriangle [v1;...;v5] =

sl

s2

v2
vl v3

v5 v4:

22

More General Shapes]

type point = float * float
type radius = float
type side = float

type shape = P from a single side

Square of side
| Ellipse of radius * radius
| RtTriangle of side * side
| Polygon of point list

Square builds a shape

RtTriangle builds a shape

let sqg : shape = Square 17.0

let ell : shape = Ellipse (1.0, 2.0) é////////

let rt : shape = RtTriangle (1.0, 1.0)

let poly : shape = Polygon [(0., 0.); (1., O0.); (O0.; 1.)]

7 from a pair of sides

:

they are all shapes;
they are constructed in
different ways

A el
\

Polygon builds a shape
from a list of points
(where each point is itself a pair)

23

More General Shapes]

type point = float * float
type radius = float
type side = float

type shape =

Square of side
Ellipse of radius * radius

RtTriangle of side * side
Polygon of point list

a data type also defines
a pattern for matching

let area (s : shape) : float =
match s with

Square s -> —

Ellipse (rl, r2)->
RtTriangle (sl, s2) ->

Polygon ps —-> s\\\\\\\\\\

Square carries a value
with type float so s is
a pattern for float values

RtTriangle carries a value

with type float * float
so (s1, s2) is a pattern
for that type

More General Shapes

type point = float * float
type radius = float
type side = float

type shape =
Square of side
| Ellipse of radius * radius
| RtTriangle of side * side
| Polygon of point list

a data type also defines
a pattern for matching

let area (s : shape) : float
match s with
| Square s -> s *. s

| Ellipse (rl, r2)-> pi *. rl =*.
| RtTriangle (sl, s2) -> sl*.s2/.2.
|

Polygon ps -> 27?7

r2

24

Computing Area

* How do we compute polygon area?

* For convex polygons:
— Case: the polygon has fewer than 3 points:
e it has O area! (itisaline or a point or nothing at all)

— Case: the polygon has 3 or more points:
 Compute the area of the triangle formed by the first 3 vertices
* Delete the second vertex to form a new polygon
* Sum the area of the triangle and the new polygon

v2
vl v3

- A+D

v5 v4

Computing Area

* How do we compute polygon area?
* For convex polygons:

— Case: the polygon has fewer than 3 points:
e it has O area! (itisaline or a point or nothing at all)
— Case: the polygon has 3 or more points:

 Compute the area of the triangle formed by the first 3 vertices
* Delete the second vertex to form a new polygon
* Sum the area of the triangle and the new polygon

* Note: Thisis a beautiful inductive algorithm:

— the area of a polygon with n points is computed in terms of a
smaller polygon with only n-1 points!

v2
vl v3

o - a g

How do you compute the area of a triangle?

b a+b+c
2
c

area = \/s(s —a)(s—b)(s —c)

Heron’s formula

Published by Heron of Alexandria (Egypt), 60 A.D.

Probably known to Archimedes (Syracuse, Sicily), 220 B.C.
Published independently by Qin Jiushao Z 188, (Sichuan province) 1247

27

How do you compute the area of a triangle?

2N
C

a+b+c
2

Let s =

area = \/S(S —a)(s—b)(s —c)

let tri_

let a
let b
let c
let s
sgrt

area (pl:point) (p2:point) (p3:point) : float =
= distance pl p2 in

= distance p2 p3 in

= distance p3 pl in

= 0.5 *, (a +. b +. ¢c) in

(s *. (s -. a) *. (s =-. b) *. (s =-. <))

28

Computing Area

let poly area (ps : point list) : float

match ps with

m—

29

This pattern says the
list has at least 3 items

| pl :: p2 :: p3 :: tail ->
tri area pl p2 p3 +. poly area (pl::p3::tail)
| => 0.
let area (s : shape) : float =

match s with

| Square s -> s *. s

| Ellipse (rl, r2)-> rl *. r2
| RtTriangle (sl, s2) -> sl *.
| Polygon ps —-> poly area ps

s2

/. 2.

v2
vl v3

_ A+D

v5 v4

Summary

A datatype t has constructors ¢; ¢, ¢,

Each constructor may carry a value (like Square(s))
or be a constant constructor (like Green)

We build values of type t by applying constructors to values
(or by applying constant constructors to nothing)

We examine values of type t by pattern-matching.

30

