
Polymorphism

COS 326
Speaker: Andrew Appel

Princeton University

slides copyright 2017 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes

POLY-HO!

polymorphic,
higher-order
programming

Here’s an annoying thing

3

What if I want to increment a list of floats?
Alas, I can’t just call this map. It works on ints!

let rec map (f:int->int) (xs:int list) : int list =
match xs with
| [] -> []
| hd::tl -> (f hd)::(map f tl);;

Here’s an annoying thing

4

What if I want to increment a list of floats?
Alas, I can’t just call this map. It works on ints!

let rec map (f:int->int) (xs:int list) : int list =
match xs with
| [] -> []
| hd::tl -> (f hd)::(map f tl);;

let rec mapfloat (f:float->float) (xs:float list) :
float list =

match xs with
| [] -> []
| hd::tl -> (f hd)::(mapfloat f tl);;

Turns out

5

let rec map f xs =
match xs with
| [] -> []
| hd::tl -> (f hd)::(map f tl)

let ints = map (fun x -> x + 1) [1; 2; 3; 4]

let floats = map (fun x -> x +. 2.0) [3.1415; 2.718]

let strings = map String.uppercase [“sarah”; “joe”]

Type of the undecorated map?

6

let rec map f xs =
match xs with
| [] -> []
| hd::tl -> (f hd)::(map f tl)

map : ('a -> 'b) -> 'a list -> 'b list

Type of the undecorated map?

7

Read as:
• for any types 'a and 'b,
• if you give map a function from 'a to 'b,
• it will return a function
– which when given a list of 'a values
– returns a list of 'b values.

let rec map f xs =
match xs with
| [] -> []
| hd::tl -> (f hd)::(map f tl)

map : ('a -> 'b) -> 'a list -> 'b list
We often use
greek letters
like a or b to

represent type
variables.

We can say this explicitly

8

The OCaml compiler is smart enough to figure out that this is
the most general type that you can assign to the code.
(technical term: principal type)

We say map is polymorphic in the types 'a and 'b – just a fancy way to
say map can be used on any types 'a and 'b.

Java generics derived from ML-style polymorphism (but added after
the fact and more complicated due to subtyping)

let rec map (f:'a -> 'b) (xs:'a list) : 'b list =
match xs with
| [] -> []
| hd::tl -> (f hd)::(map f tl)

map : (‘a -> ‘b) -> ‘a list -> ‘b list

More realistic polymorphic functions

9

let rec merge (lt:'a->'a->bool) (xs:'a list) (ys:'a list) : 'a list =
match (xs,ys) with
| ([],_) -> ys

| (_,[]) -> xs

| (x::xst, y::yst) ->
if lt x y then x::(merge lt xst ys)

else y::(merge lt xs yst)

let rec split (xs:'a list)(ys:'a list)(zs:'a list) : 'a list * 'a list =
match xs with

| [] -> (ys, zs)

| x::rest -> split rest zs (x::ys)

let rec mergesort (lt:'a->'a->bool) (xs:'a list) : 'a list =

match xs with
| ([] | _::[]) -> xs

| _ -> let (first,second) = split xs [] [] in

merge lt (mergesort lt first) (mergesort lt second)

More realistic polymorphic functions

10

mergesort : ('a->'a->bool) -> 'a list -> 'a list

mergesort (<) [3;2;7;1]

== [1;2;3;7]

mergesort (>) [2; 3; 42]

== [42 ; 3; 2]

mergesort (fun x y -> String.compare x y < 0) [“Hi”; “Bi”]

== [“Bi”; “Hi”]

let int_sort = mergesort (<)

let int_sort_down = mergesort (>)

let str_sort = mergesort (fun x y -> String.compare x y < 0)

let mystery = fun x -> (add 1) (square x)

Another Interesting Function

11

let comp f g x = f (g x)

let mystery = comp (add 1) square

let comp = fun f -> (fun g -> (fun x -> f (g x)))

let mystery = comp (add 1) square

let mystery =
(fun f -> (fun g -> (fun x -> f (g x)))) (add 1) square

let mystery x = add 1 (square x)

Function composition!

12

let comp f g x = f (g x)

let mystery = comp (add 1) square

mystery = (add 1) ◦ square

mystery(x) = (add 1) (square (x))

(f◦g)(x) = f (g(x))

What is the type of comp?

13

comp : ('b -> 'c) ->
('a -> 'b) ->
('a -> 'c)

let comp f g x = f (g x)

let comp (f: 'b->'c) (g: 'a->'b) (x: 'a) : 'c
= f (g x)

Optimization

14

map f (map g [x1; x2; …; xn])

What does this program do?

For each element of the list x1, x2, x3 ... xn, it executes g, creating:

map f ([g x1; g x2; …; g xn])

Then for each element of the list [g x1, g x2, g x3 ... g xn], it executes f, creating:

[f (g x1); f (g x2); …; f (g xn)]

Optimization

15

map f (map g)

What does this program do? x1 x2 xn

fgx1 fgx2 fgxn

map f

gx1 gx2 gxn

reclaimed by
garbage collector

Optimization

16

map f (map g [x1; x2; …; xn])

What does this program do?

For each element of the list x1, x2, x3 ... xn, it executes g, creating:

map f ([g x1; g x2; …; g xn])

Then for each element of the list [g x1, g x2, g x3 ... g xn], it executes f, creating:

[f (g x1); f (g x2); …; f (g xn)]

Is there a faster way? Yes! (And query optimizers for SQL do it for you.)

map (comp f g) [x1; x2; ...; xn]

Deforestation

17

map f (map g [x1; x2; …; xn])

map (comp f g) [x1; x2; ...; xn]

This kind of optimization has a name:

deforestation

(because it eliminates intermediate
lists and, um, trees…)

How about reduce?

18

let rec reduce f u xs =

match xs with
| [] -> u

| hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?

How about reduce?

19

let rec reduce f u xs =

match xs with
| [] -> u

| hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?
Based on the
patterns, we

know xs must be
a ('a list) for

some type 'a.

How about reduce?

20

let rec reduce f u (xs: 'a list) =
match xs with
| [] -> u

| hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?

How about reduce?

21

let rec reduce f u (xs: 'a list) =
match xs with
| [] -> u

| hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?

f is called so it
must be a

function of two
arguments.

How about reduce?

22

let rec reduce (f:? -> ? -> ?) u (xs: 'a list) =

match xs with
| [] -> u

| hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?

How about reduce?

23

let rec reduce (f:? -> ? -> ?) u (xs: 'a list) =

match xs with
| [] -> u

| hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?

Furthermore, hd
came from xs, so
f must take an 'a
value as its first

argument.

How about reduce?

24

let rec reduce (f:'a -> ? -> ?) u (xs: 'a list) =

match xs with
| [] -> u

| hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?

How about reduce?

25

let rec reduce (f:'a -> ? -> ?) u (xs: 'a list) =

match xs with
| [] -> u

| hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?

The second
argument to f
must have the

same type as the
result of reduce.

Let’s call it 'b.

How about reduce?

26

let rec reduce (f:'a -> 'b -> ?) u (xs: 'a list) : 'b =

match xs with
| [] -> u

| hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?

The result of f
must have the

same type as the
result of reduce

overall: 'b.

How about reduce?

27

let rec reduce (f:'a -> 'b -> 'b) u (xs: 'a list) : 'b =

match xs with
| [] -> u

| hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?

How about reduce?

28

let rec reduce (f:'a -> 'b -> ?) u (xs: 'a list) : 'b =

match xs with
| [] -> u

| hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?

If xs is empty,
then reduce

returns u. So u’s
type must be 'b.

How about reduce?

29

let rec reduce (f:'a -> 'b -> ?) (u:'b) (xs: 'a list) : 'b =

match xs with
| [] -> u

| hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?

How about reduce?

30

let rec reduce (f:'a -> 'b -> ?) (u:'b) (xs: 'a list) : 'b =

match xs with
| [] -> u

| hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?

reduce returns
the result of f. So

f’s result type
must be 'b.

How about reduce?

31

let rec reduce (f:'a -> 'b -> 'b) (u:'b) (xs: 'a list) : 'b =

match xs with
| [] -> u

| hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?

How about reduce?

32

let rec reduce (f:'a -> 'b -> 'b) (u:'b) (xs: 'a list) : 'b =

match xs with
| [] -> u

| hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?

('a -> 'b -> 'b) -> 'b -> 'a list -> 'b

What does this do?

33

let rec reduce f u xs =
match xs with
| [] -> u

| hd::tl -> f hd (reduce f u tl)

let mystery0 = reduce (fun x y -> 1+y) 0

What does this do?

34

let rec reduce f u xs =
match xs with
| [] -> u

| hd::tl -> f hd (reduce f u tl);;

let mystery0 = reduce (fun x y -> 1+y) 0;;

let rec mystery0 xs =

match xs with
| [] -> 0

| hd::tl ->
(fun x y -> 1+y) hd (reduce (fun ...) 0 tl)

What does this do?

35

let rec reduce f u xs =
match xs with
| [] -> u

| hd::tl -> f hd (reduce f u tl);;

let mystery0 = reduce (fun x y -> 1+y) 0;;

let rec mystery0 xs =

match xs with
| [] -> 0

| hd::tl ->
(fun x y -> 1+y) hd (reduce (fun ...) 0 tl)

What does this do?

36

let rec reduce f u xs =
match xs with
| [] -> u

| hd::tl -> f hd (reduce f u tl);;

let mystery0 = reduce (fun x y -> 1+y) 0;;

let rec mystery0 xs =

match xs with
| [] -> 0

| hd::tl ->
(fun y -> 1+y) (reduce (fun ...) 0 tl)

What does this do?

37

let rec reduce f u xs =
match xs with
| [] -> u

| hd::tl -> f hd (reduce f u tl)

let mystery0 = reduce (fun x y -> 1+y) 0

let rec mystery0 xs =

match xs with
| [] -> 0

| hd::tl -> 1 + reduce (fun ...) 0 tl

What does this do?

38

let rec reduce f u xs =
match xs with
| [] -> u

| hd::tl -> f hd (reduce f u tl)

let mystery0 = reduce (fun x y -> 1+y) 0

let rec mystery0 xs =

match xs with
| [] -> 0

| hd::tl -> 1 + mystery0 tl

What does this do?

39

let rec reduce f u xs =
match xs with
| [] -> u

| hd::tl -> f hd (reduce f u tl)

let mystery0 = reduce (fun x y -> 1+y) 0

let rec mystery0 xs =

match xs with
| [] -> 0

| hd::tl -> 1 + mystery0 tl List Length!

What does this do?

40

let rec reduce f u xs =
match xs with
| [] -> u

| hd::tl -> f hd (reduce f u tl);;

let mystery1 = reduce (fun x y -> x::y) []

What does this do?

41

let rec reduce f u xs =
match xs with
| [] -> u

| hd::tl -> f hd (reduce f u tl)

let mystery1 = reduce (fun x y -> x::y) []

let rec mystery1 xs =

match xs with
| [] -> []

| hd::tl -> hd::(mystery1 tl) Copy!

And this one?

42

let rec reduce f u xs =
match xs with
| [] -> u

| hd::tl -> f hd (reduce f u tl)

let mystery2 g =
reduce (fun a b -> (g a)::b) []

And this one?

43

let rec reduce f u xs =
match xs with
| [] -> u

| hd::tl -> f hd (reduce f u tl)

let mystery2 g =
reduce (fun a b -> (g a)::b) []

let rec mystery2 g xs =

match xs with
| [] -> []
| hd::tl -> (g hd)::(mystery2 g tl) map!

Map and Reduce

We coded map in terms of reduce:
• ie: we showed we can compute map f xs using a call to

reduce ? ? ? just by passing the right arguments in place of ? ? ?

Can we code reduce in terms of map?

val map : ('a -> 'b) -> 'a list -> 'b list

val reduce : ('a -> 'b -> 'b) -> 'b -> 'a list -> 'b

Map and Reduce

let reduce f u xs = … map (…) (…) …
(use only: map, f, u, xs; don’t use rec)

val map : ('a -> 'b) -> 'a list -> 'b list

val reduce : ('a -> 'b -> 'b) -> 'b -> 'a list -> 'b

reduce (+) 0 [1;2;3] = … map (…) (…) …

Some Other Combinators: List Module

val iter : ('a -> unit) -> 'a list -> unit

List.iter f [a0; ...; an] == f a0; … ; f an

val mapi : (int -> 'a -> 'b) -> 'a list -> 'b list

List.mapi f [a0; ...; an] == [f 0 a0; … ; f n an]

val map2 : ('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list

List.map2 f [a0; ...; an] [b0; ...; bn] == [f a0 b0 ; … ; f an bn]

val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b

https://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html

http://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html

Summary

47

• Map and reduce are two higher-order functions that capture
very, very common recursion patterns

• Reduce is especially powerful:
– related to the “visitor pattern” of OO languages like Java.
– can implement most list-processing functions using it, including

things like copy, append, filter, reverse, map, etc.

• We can write clear, terse, reusable code by exploiting:
– higher-order functions
– anonymous functions
– first-class functions
– polymorphism

Practice Problems

48

Using map, write a function that takes a list of pairs of integers, and produces
a list of the sums of the pairs.

– e.g., list_add [(1,3); (4,2); (3,0)] = [4; 6; 3]
– Write list_add directly using reduce.

Using map, write a function that takes a list of pairs of integers, and produces
their quotient if it exists.

– e.g., list_div [(1,3); (4,2); (3,0)] = [Some 0; Some 2; None]
– Write list_div directly using reduce.

Using reduce, write a function that takes a list of optional integers, and filters
out all of the None’s.

– e.g., filter_none [Some 0; Some 2; None; Some 1] = [0;2;1]
– Why can’t we directly use filter? How would you generalize filter so that

you can compute filter_none? Alternatively, rig up a solution using filter + map.

Using reduce, write a function to compute the sum of squares of a list of
numbers.

– e.g., sum_squares = [3,5,2] = 38

