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Some Design & Coding Rules
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• Save some software-engineering effort:  
Never write the same code twice.

“Ooh, I get it!  I’ll write the code once, copy-paste it somewhere 
else . . . that way, I didn’t write the same code twice”
– What’s wrong with that?

• Instead, a better practice:
– factor out the common bits into a reusable procedure.
– even better: use someone else’s (well-tested, well-documented, 

and well-maintained) procedure.

• find and fix a bug in one copy, have to fix in all of them.
• decide to change the functionality, have to track down all of the 

places where it gets used.   



Factoring Code in OCaml
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Consider these definitions:

let rec inc_all (xs:int list) : int list = 
match xs with 
| [] -> []
| hd::tl -> (hd+1)::(inc_all tl)

let rec square_all (xs:int list) : int list =
match xs with
| [] -> []
| hd::tl -> (hd*hd)::(square_all tl)



Factoring Code in OCaml
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Consider these definitions:

The code is almost identical – factor it out!

let rec inc_all (xs:int list) : int list = 
match xs with 
| [] -> []
| hd::tl -> (hd+1)::(inc_all tl)

let rec square_all (xs:int list) : int list =
match xs with
| [] -> []
| hd::tl -> (hd*hd)::(square_all tl)



Factoring Code in OCaml
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A higher-order function captures the recursion pattern:

let rec map (f:int->int) (xs:int list) : int list = 
match xs with 
| [] -> []
| hd::tl -> (f hd)::(map f tl)



Factoring Code in OCaml
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A higher-order function captures the recursion pattern:

Uses of the function:

let rec map (f:int->int) (xs:int list) : int list = 
match xs with 
| [] -> []
| hd::tl -> (f hd)::(map f tl)

let inc x = x+1
let inc_all xs = map inc xs



Factoring Code in OCaml
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A higher-order function captures the recursion pattern:

Uses of the function:

let rec map (f:int->int) (xs:int list) : int list = 
match xs with 
| [] -> []
| hd::tl -> (f hd)::(map f tl)

let inc x = x+1
let inc_all xs = map inc xs

let square y = y*y
let square_all xs = map square xs

Writing little 
functions like inc

just so we call 
map is a pain.



Factoring Code in OCaml
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A higher-order function captures the recursion pattern:

Uses of the function:

let rec map (f:int->int) (xs:int list) : int list = 
match xs with 
| [] -> []
| hd::tl -> (f hd)::(map f tl);;

let inc_all xs = map (fun x -> x + 1) xs

let square_all xs = map (fun y -> y * y) xs

We can use an 
anonymous 

function instead.
Originally, Alonzo 
Church wrote this 

function using      
l instead of fun:

(lx.  x+1) or 
(lx. x*x)



Another example
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let rec sum (xs:int list) : int = 
match xs with 
| [] -> 0
| hd::tl -> hd + (sum tl)

let rec prod (xs:int list) : int = 
match xs with 
| [] -> 1
| hd::tl -> hd * (prod tl)

Goal:  Create a function called reduce that
when supplied with a few arguments
can implement both sum and prod.
Define sum2 and prod2 using reduce.

(Try it)

Goal:  If you finish early, use 
map and reduce  together to 
find the sum of the squares of 
the elements of a list.

(Try it)



Another example
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let rec sum (xs:int list) : int = 
match xs with 
| [] -> b
| hd::tl -> hd + (sum tl)

let rec prod (xs:int list) : int = 
match xs with 
| [] -> b
| hd::tl -> hd * (prod tl)



Another example
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let rec sum (xs:int list) : int = 
match xs with 
| [] -> b
| hd::tl -> hd OP (RECURSIVE CALL ON tl)

let rec prod (xs:int list) : int = 
match xs with 
| [] -> b
| hd::tl -> hd OP (RECURSIVE CALL ON tl)



Another example
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let rec sum (xs:int list) : int = 
match xs with 
| [] -> b
| hd::tl -> f hd (RECURSIVE CALL ON tl)

let rec prod (xs:int list) : int = 
match xs with 
| [] -> b
| hd::tl -> f hd (RECURSIVE CALL ON tl)



A generic reducer
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let add x y = x + y 
let mul x y = x * y

let rec reduce (f:int->int->int) (b:int) (xs:int list) : int = 
match xs with
| [] -> b
| hd::tl -> f hd (reduce f b tl)

let sum xs = reduce add 0 xs
let prod xs = reduce mul 1 xs



Using Anonymous Functions
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let rec reduce (f:int->int->int) (b:int) (xs:int list) : int = 
match xs with
| [] -> b
| hd::tl -> f hd (reduce f b tl)

let sum xs = reduce (fun x y -> x+y) 0 xs
let prod xs = reduce (fun x y -> x*y) 1 xs



Using Anonymous Functions
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let rec reduce (f:int->int->int) (b:int) (xs:int list) : int = 
match xs with
| [] -> b
| hd::tl -> f hd (reduce f b tl)

let sum xs = reduce (fun x y -> x+y) 0 xs
let prod xs = reduce (fun x y -> x*y) 1 xs

let sum_of_squares xs = sum (map (fun x -> x * x) xs)
let pairify xs = map (fun x -> (x,x)) xs



Using Anonymous Functions
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let rec reduce (f:int->int->int) (b:int) (xs:int list) : int = 
match xs with
| [] -> b
| hd::tl -> f hd (reduce f b tl)

let sum xs = reduce (+) 0 xs
let prod xs = reduce ( * ) 1 xs

let sum_of_squares xs = sum (map (fun x -> x * x) xs)
let pairify xs = map (fun x -> (x,x)) xs



Using Anonymous Functions
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let rec reduce (f:int->int->int) (b:int) (xs:int list) : int = 
match xs with
| [] -> b
| hd::tl -> f hd (reduce f b tl)

let sum xs = reduce (+) 0 xs
let prod xs = reduce (*) 1 xs

let sum_of_squares xs = sum (map (fun x -> x * x) xs)
let pairify xs = map (fun x -> (x,x)) xs

wrong



Using Anonymous Functions
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let rec reduce (f:int->int->int) (b:int) (xs:int list) : int = 
match xs with
| [] -> b
| hd::tl -> f hd (reduce f b tl)

let sum xs = reduce (+) 0 xs
let prod xs = reduce (*) 1 xs

let sum_of_squares xs = sum (map (fun x -> x * x) xs)
let pairify xs = map (fun x -> (x,x)) xs

wrong  -- creates a comment!  ug.  OCaml -0.1

what does work is:   ( * )   



More on Anonymous Functions
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Function declarations:

are syntactic sugar for:

In other words, functions are values we can bind to a variable, 
just like 3 or “moo” or true.  

Functions are 2nd class no more!

let square x = x*x 

let add x y = x+y

let square = (fun x -> x*x) 

let add = (fun x y -> x+y) 



One argument, one result
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Simplifying further:

is shorthand for:

That is, add is a function which:
– when given a value x, returns a function (fun y -> x+y) which:

• when given a value y, returns x+y.

let add = (fun x y -> x+y)

let add = (fun x -> (fun y -> x+y))



Curried Functions
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curry: verb
(1) to prepare or flavor with hot-tasting spices
(2) to encode a multi-argument function using nested, higher-

order functions.

fun x -> (fun y -> x+y) (* curried *)

fun x y -> x + y (* curried *)

fun (x,y) -> x+y (* uncurried *)

(1)

(2)



Curried Functions
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Named after the logician Haskell B. Curry (1950s).
– was trying to find minimal logics that are powerful enough to 

encode traditional logics.
– much easier to prove something about a logic with 3 connectives 

than one with 20.  
– the ideas translate directly to math (set & category theory) as well 

as to computer science. 
– Actually, Moses Schönfinkel did some of this in 1924

• thankfully, we don't have to talk about Schönfinkelled functions

Curry Schönfinkel



What’s so good about Currying?
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In addition to simplifying the language, currying functions so that 
they only take one argument leads to two major wins:

1. We can partially apply a function.
2. We can more easily compose functions. 



Partial Application
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Curried functions allow defs of new, partially applied functions:  

Equivalent to writing:

which is equivalent to writing:

also:

let add = (fun x -> (fun y -> x+y)) 

let inc = add 1

let inc = (fun y -> 1+y)

let inc y = 1+y

let inc2 = add 2
let inc3 = add 3


