
Poly-HO!

polymorphic,
higher-order
programming

COS 326
Speaker: Andrew Appel

Princeton University

slides copyright 2017 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes

Some Design & Coding Rules

2

• Save some software-engineering effort:
Never write the same code twice.

“Ooh, I get it! I’ll write the code once, copy-paste it somewhere
else . . . that way, I didn’t write the same code twice”
– What’s wrong with that?

• Instead, a better practice:
– factor out the common bits into a reusable procedure.
– even better: use someone else’s (well-tested, well-documented,

and well-maintained) procedure.

• find and fix a bug in one copy, have to fix in all of them.
• decide to change the functionality, have to track down all of the

places where it gets used.

Factoring Code in OCaml

3

Consider these definitions:

let rec inc_all (xs:int list) : int list =
match xs with
| [] -> []
| hd::tl -> (hd+1)::(inc_all tl)

let rec square_all (xs:int list) : int list =
match xs with
| [] -> []
| hd::tl -> (hd*hd)::(square_all tl)

Factoring Code in OCaml

4

Consider these definitions:

The code is almost identical – factor it out!

let rec inc_all (xs:int list) : int list =
match xs with
| [] -> []
| hd::tl -> (hd+1)::(inc_all tl)

let rec square_all (xs:int list) : int list =
match xs with
| [] -> []
| hd::tl -> (hd*hd)::(square_all tl)

Factoring Code in OCaml

5

A higher-order function captures the recursion pattern:

let rec map (f:int->int) (xs:int list) : int list =
match xs with
| [] -> []
| hd::tl -> (f hd)::(map f tl)

Factoring Code in OCaml

6

A higher-order function captures the recursion pattern:

Uses of the function:

let rec map (f:int->int) (xs:int list) : int list =
match xs with
| [] -> []
| hd::tl -> (f hd)::(map f tl)

let inc x = x+1
let inc_all xs = map inc xs

Factoring Code in OCaml

7

A higher-order function captures the recursion pattern:

Uses of the function:

let rec map (f:int->int) (xs:int list) : int list =
match xs with
| [] -> []
| hd::tl -> (f hd)::(map f tl)

let inc x = x+1
let inc_all xs = map inc xs

let square y = y*y
let square_all xs = map square xs

Writing little
functions like inc

just so we call
map is a pain.

Factoring Code in OCaml

8

A higher-order function captures the recursion pattern:

Uses of the function:

let rec map (f:int->int) (xs:int list) : int list =
match xs with
| [] -> []
| hd::tl -> (f hd)::(map f tl);;

let inc_all xs = map (fun x -> x + 1) xs

let square_all xs = map (fun y -> y * y) xs

We can use an
anonymous

function instead.
Originally, Alonzo
Church wrote this

function using
l instead of fun:

(lx. x+1) or
(lx. x*x)

Another example

9

let rec sum (xs:int list) : int =
match xs with
| [] -> 0
| hd::tl -> hd + (sum tl)

let rec prod (xs:int list) : int =
match xs with
| [] -> 1
| hd::tl -> hd * (prod tl)

Goal: Create a function called reduce that
when supplied with a few arguments
can implement both sum and prod.
Define sum2 and prod2 using reduce.

(Try it)

Goal: If you finish early, use
map and reduce together to
find the sum of the squares of
the elements of a list.

(Try it)

Another example

10

let rec sum (xs:int list) : int =
match xs with
| [] -> b
| hd::tl -> hd + (sum tl)

let rec prod (xs:int list) : int =
match xs with
| [] -> b
| hd::tl -> hd * (prod tl)

Another example

11

let rec sum (xs:int list) : int =
match xs with
| [] -> b
| hd::tl -> hd OP (RECURSIVE CALL ON tl)

let rec prod (xs:int list) : int =
match xs with
| [] -> b
| hd::tl -> hd OP (RECURSIVE CALL ON tl)

Another example

12

let rec sum (xs:int list) : int =
match xs with
| [] -> b
| hd::tl -> f hd (RECURSIVE CALL ON tl)

let rec prod (xs:int list) : int =
match xs with
| [] -> b
| hd::tl -> f hd (RECURSIVE CALL ON tl)

A generic reducer

13

let add x y = x + y
let mul x y = x * y

let rec reduce (f:int->int->int) (b:int) (xs:int list) : int =
match xs with
| [] -> b
| hd::tl -> f hd (reduce f b tl)

let sum xs = reduce add 0 xs
let prod xs = reduce mul 1 xs

Using Anonymous Functions

14

let rec reduce (f:int->int->int) (b:int) (xs:int list) : int =
match xs with
| [] -> b
| hd::tl -> f hd (reduce f b tl)

let sum xs = reduce (fun x y -> x+y) 0 xs
let prod xs = reduce (fun x y -> x*y) 1 xs

Using Anonymous Functions

15

let rec reduce (f:int->int->int) (b:int) (xs:int list) : int =
match xs with
| [] -> b
| hd::tl -> f hd (reduce f b tl)

let sum xs = reduce (fun x y -> x+y) 0 xs
let prod xs = reduce (fun x y -> x*y) 1 xs

let sum_of_squares xs = sum (map (fun x -> x * x) xs)
let pairify xs = map (fun x -> (x,x)) xs

Using Anonymous Functions

16

let rec reduce (f:int->int->int) (b:int) (xs:int list) : int =
match xs with
| [] -> b
| hd::tl -> f hd (reduce f b tl)

let sum xs = reduce (+) 0 xs
let prod xs = reduce (*) 1 xs

let sum_of_squares xs = sum (map (fun x -> x * x) xs)
let pairify xs = map (fun x -> (x,x)) xs

Using Anonymous Functions

17

let rec reduce (f:int->int->int) (b:int) (xs:int list) : int =
match xs with
| [] -> b
| hd::tl -> f hd (reduce f b tl)

let sum xs = reduce (+) 0 xs
let prod xs = reduce (*) 1 xs

let sum_of_squares xs = sum (map (fun x -> x * x) xs)
let pairify xs = map (fun x -> (x,x)) xs

wrong

Using Anonymous Functions

18

let rec reduce (f:int->int->int) (b:int) (xs:int list) : int =
match xs with
| [] -> b
| hd::tl -> f hd (reduce f b tl)

let sum xs = reduce (+) 0 xs
let prod xs = reduce (*) 1 xs

let sum_of_squares xs = sum (map (fun x -> x * x) xs)
let pairify xs = map (fun x -> (x,x)) xs

wrong -- creates a comment! ug. OCaml -0.1

what does work is: (*)

More on Anonymous Functions

19

Function declarations:

are syntactic sugar for:

In other words, functions are values we can bind to a variable,
just like 3 or “moo” or true.

Functions are 2nd class no more!

let square x = x*x

let add x y = x+y

let square = (fun x -> x*x)

let add = (fun x y -> x+y)

One argument, one result

20

Simplifying further:

is shorthand for:

That is, add is a function which:
– when given a value x, returns a function (fun y -> x+y) which:

• when given a value y, returns x+y.

let add = (fun x y -> x+y)

let add = (fun x -> (fun y -> x+y))

Curried Functions

21

curry: verb
(1) to prepare or flavor with hot-tasting spices
(2) to encode a multi-argument function using nested, higher-

order functions.

fun x -> (fun y -> x+y) (* curried *)

fun x y -> x + y (* curried *)

fun (x,y) -> x+y (* uncurried *)

(1)

(2)

Curried Functions

22

Named after the logician Haskell B. Curry (1950s).
– was trying to find minimal logics that are powerful enough to

encode traditional logics.
– much easier to prove something about a logic with 3 connectives

than one with 20.
– the ideas translate directly to math (set & category theory) as well

as to computer science.
– Actually, Moses Schönfinkel did some of this in 1924

• thankfully, we don't have to talk about Schönfinkelled functions

Curry Schönfinkel

What’s so good about Currying?

24

In addition to simplifying the language, currying functions so that
they only take one argument leads to two major wins:

1. We can partially apply a function.
2. We can more easily compose functions.

Partial Application

25

Curried functions allow defs of new, partially applied functions:

Equivalent to writing:

which is equivalent to writing:

also:

let add = (fun x -> (fun y -> x+y))

let inc = add 1

let inc = (fun y -> 1+y)

let inc y = 1+y

let inc2 = add 2
let inc3 = add 3

