Poly-HO!

COS 326 -
polymorphic,
Speaker: Andrew Appel higherorder

programming

Princeton University

slides copyright 2017 David Walker and AndrewJ\QpeI
permission granted to reuse these slides for non-commercial educational purposes

Some Design & Coding Rules

* Save some software-engineering effort:
Never write the same code twice.

“Ooh, I get it! I'll write the code once, copy-paste it somewhere
else . .. that way, | didn’t write the same code twice”
— What’s wrong with that?

* find and fix a bug in one copy, have to fix in all of them.
* decide to change the functionality, have to track down all of the
places where it gets used.

* Instead, a better practice:

— factor out the common bits into a reusable procedure.

— even better: use someone else’s (well-tested, well-documented,
and well-maintained) procedure.

Factoring Code in OCaml

Consider these definitions:

let rec inc all (xs:int list) : int list =
match xs with
| [-> []
| hd::tl -> (hd+l)::(inc_all tl)

let rec square all (xs:int list) : int list =
match xs with
| [-> []
| hd::tl -> (hd*hd) :: (square all tl)

Factoring Code in OCaml

Consider these definitions:

let rec inc all
match xs with
| [1 —> []
| hd::tl ->

(hd+1) ::

(xs:1nt list)

(inc_all tl)

: 1Int list =

match xs with

| [] => []
| hd::tl ->

let rec square all

(hd*hd) ::

(xs:1nt 1list)

: int list

(square all tl)

The code is almost identical — factor it out!

Factoring Code in OCaml

A higher-order function captures the recursion pattern:

|] => []
| hd::tl ->

(£ hd) ::

let rec map (f:int->int) (xs:int 1list)
match xs with

(map £ t1l)

: int list

Factoring Code in OCaml

A higher-order function captures the recursion pattern:

let rec map (f:int->int) (xs:int list) : 1int list =
match xs with
| [] —> []
| hd::tl -> (£ hd):: (map £ t1l)

Uses of the function:

let inc x = x+1
let inc all xs = map 1nc Xs

Factoring Code in OCaml

A higher-order function captures the recursion pattern:

let rec map (f:int->int) (xs:int list) : 1int list =
match xs with
| [] —> []

| hd::tl -> (£ hd):: (map £ t1l)

Uses of the function:

Writing little
functions like inc
just so we call
map is a pain.

let inc x = x+1
let inc all xs = map 1nc Xs

let square y = y*y
let square all Xs = map square Xs

Factoring Code in OCaml]

A higher-order function captures the recursion pattern:

let rec map (f:int->int) (xs:int list) : 1int list =
match xs with

| 1 => []
| hd::t1l -> (£ hd):: (map £ tl1);;

We can use an
anonymous
function instead

Originally, Alonzo
Church wrote this
function using
A instead of fun:
(Ax. x+1) or
(Ax. x*x)

Uses of the function:

let inc all xs = map (fun x -> x + 1) xs

let square all xs = map (fun y -> y * y) xs

Another example

let rec sum (xs:int 1list)
match xs with
| [1 -> 0
| hd::tl -> hd + (sum tl)
let rec prod (xs:int list)
match xs with
| [] > 1
| hd::tl -> hd * (prod tl)

int

int

Goal: Create a function called reduce that
when supplied with a few arguments

can implement both sum and prod.
Define sum2 and prod2 using reduce.

(Try it)

Goal: If you finish early, use
map and reduce together to
find the sum of the squares of
the elements of a list.

(Try it)

Another example

let rec sum (xs:int list) : int =
match xs with
| [] -> b

| hd::tl -> hd + (sum tl)

let rec prod (xs:int list) : int =
match xs with
| [] -> b

| hd::tl -> hd * (prod tl)

10

Another example

let rec sum (xs:int list) : int =
match xs with
| [] -> b

| hd::tl -> hd OP (RECURSIVE CALL ON t1l)

let rec prod (xs:int list) : int =
match xs with
| [] -> b

| hd::tl -> hd OP (RECURSIVE CALL ON t1l)

1Y

Another example

let rec sum (xs:int list) : int =
match xs with
| [] -> b

| hd::tl -> £ hd (RECURSIVE CALL ON t1)

let rec prod (xs:int list) : int =
match xs with
| [] -> b

| hd::tl -> £ hd (RECURSIVE CALL ON t1l)

12

A generic reducer

let add x y =

+
let mul x y = *

X %
X Y
let rec reduce (f:int->int->int) (b:int) (xs:int 1list)

match xs with

| [] > b

| hd::tl -> £ hd (reduce £ b tl)

let sum xs = reduce add 0 xs
let prod xs = reduce mul 1 xs

int

15

Using Anonymous Functions

let rec reduce
match xs with
| [] -> Db
| hd::tl -> £

let sum xs = re
let prod xs = r

(f:int->int->int) (b:int) (xs:int list)

hd (reduce £ b tl)

duce (fun x y -> x+y) 0 xs
educe (fun x y -> x*y) 1 xs

int

14

Using Anonymous Functions

let rec reduce (f:int->int->int) (b:int) (xs:int list)
match xs with
| [] -> Db
| hd::tl -> £ hd (reduce £ b tl)

let sum xs = reduce (fun x y -> x+y) 0 xs
let prod xs = reduce (fun x y -> x*y) 1 xs

let sum of squares xs = sum (map (fun X -> X * X) Xs)
let pairify xs = map (fun x -> (x,X)) XS

int

15

Using Anonymous Functions

let rec reduce (f:int->int->int) (b:int) (xs:int list)
match xs with
| [] -> Db
| hd::tl -> £ hd (reduce £ b tl)

let sum xs = reduce (+) 0 xs
let prod xs = reduce (*) 1 xs
let sum of squares xs = sum (map (fun X -> X * X) Xs)

let pairify xs = map (fun x -> (x,X)) XS

int

16

Using Anonymous Functions

let rec reduce (f:int->int->int) (b:int) (xs:int list)
match xs with
| [] -> Db
| hd::tl -> £ hd (reduce £ b tl)

let sum xs = reduce (+) 0 xs

let prod xs = reduce (*) 1 xs

let sum of squares xs = Jum (map (fun X -> X * X) Xs)
let pairify xs = map (fun -> (X,X)) Xs

int

A\

wrong

17

Using Anonymous Functions

let rec reduce (f:int->int->int) (b:int) (xs:int list) : int =
match xs with
| [] -> Db
| hd::tl -> £ hd (reduce £ b tl)

let sum xs = reduce (+) 0 xs

let prod xs = reduce (*) 1 xs

let sum of squares xs = Jum (map (fun X -> X * X) Xs)
let pairify xs = map (fun -> (X,X)) Xs

A\

wrong -- creates a comment! ug. OCaml -0.1

what does workis: (*) 13

More on Anonymous Functions

Function declarations:

let square x = X*Xx

let add x y = x+ty

are syntactic sugar for:

let square = (fun x —-> X*X)

let add = (fun x y -> x+ty)

In other words, functions are values we can bind to a variable,
just like 3 or “moo” or true.

Functions are 2" class no more!

15

One argument, one result

Simplifying further:

let add = (fun x y -> x+ty)

is shorthand for:

let add = (fun x -> (fun y -> x+y))

That is, add is a function which:

— when given a value x, returns a function (fun y -> x+y) which:
* when given a value y, returns x+y.

20

Curried Functions

curry: verb

(1) to prepare or flavor with hot-tasting spices

(2) to encode a multi-argument function using nested, higher-
order functions.

(2)

fun x -> (fun y -> x+ty)

fun x y > x + vy
fun (x,y) —-> x+ty

(* curried *)
(* curried ¥*)

(* uncurried *)

21N N

Curried Functions

Named after the logician Haskell B. Curry (1950s).

was trying to find minimal logics that are powerful enough to
encode traditional logics.

much easier to prove something about a logic with 3 connectives
than one with 20.

the ideas translate directly to math (set & category theory) as well
as to computer science.

Actually, Moses Schonfinkel did some of this in 1924
* thankfully, we don't have to talk about Schénfinkelled functions

Schonfinkel

22

What’s so good about Currying?]

In addition to simplifying the language, currying functions so that
they only take one argument leads to two major wins:

1. We can partially apply a function.
2. We can more easily compose functions.

why u not curry that funkshun2

24 >

[Partial Application

let add = (fun x -> (fun y -> x+y))

Curried functions allow defs of new, partially applied functions:

let inc = add 1

Equivalent to writing:

let inc = (fun y -> 1+4y)

which is equivalent to writing:

let i1nc y = 1+y

also:

let inc?2 = add 2
let inc3 = add 3

25

