
A Short C and OCaml Rant

COS 326
Speaker: Andrew Appel

Princeton University

slides copyright 2017-2020 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes

Last Time: Java Pair Rant

Java has a paucity of types
– There is no type to describe just the pairs
– There is no type to describe just the triples
– There is no type to describe the pairs of pairs
– There is no type …

OCaml has many more types
– use option when things may be null
– do not use option when things are not null
– OCaml types describe data structures more precisely

• programmers have fewer cases to worry about
• entire classes of errors just go away
• type checking and pattern analysis help prevent programmers from

ever forgetting about a case

2

Java has a paucity of types
– There is no type to describe just the pairs
– There is no type to describe just the triples
– There is no type to describe the pairs of pairs
– There is no type …

OCaml has many more types
– use option when things may be null
– do not use option when things are not null
– OCaml types describe data structures more precisely

• programmers have fewer cases to worry about
• entire classes of errors just go away
• type checking and pattern analysis help prevent programmers from

ever forgetting about a case

Summary of Java Pair Rant

SCORE: OCAML 1, JAVA 0

3

C, C++ Rant

Java has a paucity of types
– but at least when you forget something,
it throws an exception instead of silently going off the trolley!

If you forget to check for null pointer in a C program,
– no type-check error at compile time
– no exception at run time
– it might crash right away (that would be best), or
– it might permit a buffer-overrun (or similar) vulnerability
– so the hackers pwn you!

4

Java has a paucity of types
– but at least when you forget something,
it throws an exception instead of silently going off the trolley!

If you forget to check for null pointer in a C program,
– no type-check error at compile time
– no exception at run time
– it might crash right away (that would be best), or
– it might permit a buffer-overrun (or similar) vulnerability
– so the hackers pwn you!

Summary of C, C++ rant

SCORE:
OCAML 1, JAVA 0, C -1

5

MORE THOUGHTS ON LISTS

6

The (Single) List Programming Paradigm
• Recall that a list is either:

– [] (the empty list)
– v :: vs (a value v followed by a previously constructed list vs)

• Some examples:

let l0 = [];; (* length is 0 *)
let l1 = 1::l0;; (* length is 1 *)
let l2 = 2::l1;; (* length is 2 *)
let l3 = 3::l2;; (* length is 3 *)
…

7

Consider This Picture
• Consider the following picture. How long is the linked structure?
• Can we build a value with type int list to represent it?

1

2

34

8

Consider This Picture
• How long is it? Infinitely long?
• Can we build a value with type int list to represent it? No!

– all values with type int list have finite length

1

2

34

9

The List Type

• Is it a good thing that the type list does not contain any
infinitely long lists? Yes!

• A terminating list-processing scheme:

let rec f (xs : int list) : int =
match xs with

[] -> … do something not recursive …
| hd::tail -> … f tail …

terminates because f only called recursively on smaller lists
10

A Loopy Program

let rec loop (xs : int list) : int =
match xs with

[] -> 0
| hd::tail -> hd + loop (0::tail)

Does this program terminate?

11

A Loopy Program

Does this program terminate? No! Why not? We call loop recursively on (0::tail).
This list is the same size as the original list -- not smaller.

let rec loop (xs : int list) : int =
match xs with

[] -> []
| hd::tail -> hd + loop (0::tail)

12

Take-home Message

ML has a strong type system
• ML types say a lot about the set of values that inhabit them

In this case, the tail of the list is always shorter than the whole list

This makes it easy to write functions that terminate; it would be
harder if you had to consider more cases, such as the case that the
tail of a list might loop back on itself. Moreover OCaml hits you over
the head to tell you what the only 2 cases are!

Note: Just because the list type excludes cyclic structures does not mean that an
ML program can't build a cyclic data structure if it wants to. ML is better than
other languages because it gives you control over the values you want to program
with, via types! 13

Rant #2: Imperative lists
• One week from today, ask yourself: Which is easier:

– Programming with immutable lists in ML?
– Programming with pointers and mutable cells in C/Java
– I guarantee you are going to say ML

• there are so many more cases to worry about in C/Java
• so many more things that can go wrong

SCORE: OCAML 2, JAVA 0
C: why bother?

14

Do not believe his lies.

let rec xs : int list = 0::xs

let rec xs : int list = 0::xsSCORE: OCAML 1.8, JAVA 0
C: why bother?

