Insertion Sort

Speaker: David Walker
COS 326 .
Princeton University

/|

/

B L ) )
slides copyright 2020 David Walker and Andrew Agpel
permission granted to reuse these slides for non-commercial educational purposes



Recall Insertion Sort

At any point during the insertion sort:

— some initial segment of the array will be sorted

— the rest of the array will be in the same (unsorted) order as it
was originally

EEEEIEIEE
\ \ J
| |

sorted unsorted




Recall Insertion Sort ]

At any point during the insertion sort:

— some initial segment of the array will be sorted

— the rest of the array will be in the same (unsorted) order as it
was originally

EEEEIEICE
\ \ J
| |

sorted unsorted

At each step, take the next item in the array and insert it in order
into the sorted portion of the list

EEIEIEEICE
\ \ J
| |

sorted unsorted J%2)




Insertion Sort With Lists

The algorithm is similar, except instead of one array, we will
maintain two lists, a sorted list and an unsorted list

list 1: list 2:
406 |7
\ J ( J
| |
sorted unsorted

We'll factor the algorithm:
— a function to insert into a sorted list
— a sorting function that repeatedly inserts



(* insert x in to sorted 1list xs *)




Insert

(* insert x in to sorted list xs ¥*)

let rec insert (x : int) (xs : int list)
match xs with
| [] =->
| hd :: tl1 ->

a familiar pattern:

int list

analyze the list by cases




Insert

(* insert x in to sorted list xs ¥*)

let rec insert (x : 1int) (xs : int
match xs with

list) : int list

B R
| hd :: tl1l —->

insert x into the
empty list




Insert

(* insert x 1n to sorted list xs *)

let rec insert (x : int) (xs : int list) : int list =
match xs with

[ => [x]

| hd :: tl1 ->
if hd < x then
hd :: insert x tl

\ J
|

T

build a new list with:
* hd at the beginning
e the result of inserting x in to

_

the tail of the list afterwards - N



Insert

(* insert x in to sorted list xs ¥*)

let rec insert (x : int) (xs : int list)
match xs with
[ => [x]
| hd :: tl1 ->
if hd < x then
hd :: insert x tl
else
X :: XS

\

int list

\

put x on the front of the list,
the rest of the list follows




A Common Paradigm

Some functions over inductive data do their work like this:
e step 1: set up initial conditions
* step 2: iterate/recurse over the data

10



A Common Paradigm

Some functions over inductive data do their work like this:
e step 1: set up initial conditions

* step 2: iterate/recurse over the data

How that looks:

let £ x y =
let rec loop z = _
.. loop z .. - recursive loop
in .
let z = setup x y in - set up
loop z -




Insertion Sort

type il = int list

insert int -=> 11 -> 11

(* insertion sort *)

let rec insert sort(xs

11)

1l

<

12



Insertion Sort

type 11 = 1nt 1list

insert : int -> 11 -> 11l

(* insertion sort *)

let rec insert sort(xs : 11)
let rec loop (sorted : 11)
in

11l =

(unsorted

11)

1l

E/'j

13



Insertion Sort

type 11 = 1nt 1list

insert : int -> 11 -> il

(* insertion sort *)
let rec insert sort(xs : 11)

let rec loop (sorted : 11)

in
loop [] xs

11l =

(unsorted

11)

1l

14



Insertion Sort

type 11 = 1nt 1list

insert : int -> 11 -> il

(* insertion sort *)

let rec insert sort(xs : 11) : 1l =
let rec loop (sorted : 11) (unsorted
match unsorted with
[ =>
| hd :: tl1 ->
in

loop [] xs

11)

1l

15



Insertion Sort

type 11 = 1nt list

insert : int -> 11 -> il

(* insertion sort *)

let rec insert sort(xs : 11) : 1l =
let rec loop (sorted : 11) (unsorted
match unsorted with
| [] —-> sorted
| hd :: tl1 ->
in

loop [] xs

11)

1l

16



Insertion Sort

type 11 = 1nt list

insert : int -> 11 -> il

(* insertion sort *)
let rec insert sort(xs

let rec loop (sorted
match unsorted with
| [] —-> sorted
| hd :: tl -> loop

in

loop [] xs

1l) : 11 =

11) (unsorted

(insert hd sorted)

11)

tl

1l

17



[ Does Insertion Sort Terminate?

Recall that we said: inductive functions should call themselves

recursively on smaller data items.

What about that loop in insertion sort?

let rec loop (sorted : 11) (unsorted : 11)
match unsorted with
| [] -> sorted
| hd :: tl -> loop (insert hd sorted) tl

: 1l




[ Does Insertion Sort Terminate?

Recall that we said: inductive functions should call themselves
recursively on smaller data items.

What about that loop in insertion sort?

let rec loop (sorted : 1l1) (unsorted : 11) : 11 =
match unsorted with
| [] -> sorted
| hd :: tl -> loop (insert hd sorted) tl
7 DN

growing! shrinking!

19



20

[ Does Insertion Sort Terminate? ]

Recall that we said: inductive functions should call themselves
recursively on smaller data items.

What about that loop in insertion sort?

let rec loop (sorted : 1l1) (unsorted : 11) : 11 =
match unsorted with
| [] -> sorted
| hd :: tl -> loop (insert hd sorted) tl
e N
growing! shrinking!

Refined idea: Pick an argument up front. That argument must

contain smaller data on every recursive call.



Exercises

Write a function to sum the elements of a list
— sum[1;2;3]==>6
Write a function to append two lists
— append [1;2;3] [4,5,6] ==> [1,2;3;4,5,6]
Write a function to reverse a list
— rev [1;2;3] ==>[3;2;1]
Write a function to turn a list of pairs into a pair of lists
— split [(1,2); (3,4); (5,6)] ==> ([1;3;5], [2;4;6])
Write a function that returns all prefixes of a list
— prefixes [1;2;3] ==> [[]; [1]; [1,2]; [1,2;3]]
suffixes...

21



