Simple Functions

Speaker: David Walker
COS 326 Y,
Princeton University

[)] "l,r“ \
slides copyright 2020 David Walker and Andrél Appel
permission granted to reuse these slides for non-commercial educational purposes

Defining functions

let add one

(x:1nt) : int = 1 + X

[Defining functions]

let keyword
\$
let add one (x:int) : int = 1 + X
Y)
/ \ type of result expression
function name that computes
type of argument value produced
by function
argument name
L

Note: recursive functions with begin with "let rec"

Defining functions

Nonrecursive functions:

let add one

let add two

(x:1nt)

: int = 1 + x

add one

AN

(add one x)

definition of add_one
must come before use

Defining functions]

Nonrecursive functions:

let add one (x:int) : int = 1 + X
let add two (x:int) : int = add one (add one Xx)
With a local definition: local function definition

hidden from clients

let add two' (x:int) : int 7 | left off the types.
let add one x = 1 + x in O'Caml figures them out

add one (add one Xx)

Good style: typesrr A\
top-level definition.

Types for Functions

Some functions:

let add one (x:int) : int = 1 + X
let add two (x:int) : int = add one (add one Xx)
let add (x:1int) (y:int) : int = x + vy

\

function with two arguments

Types for functions:

add one : int -> int
add two : int -> int

add : int -> int -> int

Rule for type-checking functions

General Rule:

If a functionf: T1 5> T2
and an argumente : T1

thenfe:T2
Example:
add one : int -> int

3 + 4 : int

add one (3 + 4) : int

Multi-argument Functions

Definition:

let add (x:int) (y:int) : int =
X + Yy

Type:

add : int -> int -> int

Multi-argument Functions

Definition:

let add (x:int) (y:int) : int =
X + Yy

Type:

add : int -> int -> int

Same as:

add : int -> (int -> int)

Rule for type-checking functions

General Rule:

If a functionf: T1 > T2
and an argumente : T1
thenfe:T2

Example:

10

A->B->C
same as:

A - (B->C)

add : int -> int -> int

3 + 4 : int

add (3 + 4) : 2727

Rule for type-checking functions

11

General Rule:

If a functionf: T1->T2
and an argumente : T1
thenfe:T2

A->B->C
same as:

A -> (B ->C)

Example:

add : int -> (int -> int)

3 + 4 : int

add (3 + 4)

Rule for type-checking functions

General Rule: Ao B C
If a functionf: T1->T2
and an argumente : T1 same as:
thenfe: T2

A->(B->C)
Example:

add : int -> (int -> int)
J

3 + 4 : int l

add (3 + 4) : int -> int

Rule for type-checking functions

General Rule: Ao B C
If a functionf: T1->T2
and an argumente : T1 same as:
thenfe: T2

A->(B->C)
Example:

add : int -> int -> int
3+ 4 : int
add (3 + 4) : int -> int

/)

(add (3 + 4)) 7 : int B

Rule for type-checking functions

General Rule: Ao B C
If a functionf: T1->T2
and an argumente : T1 same as:
thenfe:T2

A->(B->C)
Example:
add : int -> int -> int
3 + 4 : int
add (3 + 4) : int -> int

extra parens
add (3 + 4) 7 : int not necessary -
~. /

c~—

15

One key thing to remember]

* If you have a function f with a type like this:

A>B>C>D>E>F

* Then each time you add an argument, you can get the type of
the result by knocking off the first type in the series

fal:B>C—>D—>E—>F (ifal:A)
fala2:C—>D—>E—>F (ifa2:B)
fala2a3:D>E—>F (if a3 : C)

fala2a3ada5:F (if a4 : D and a5 : E)

DEBUGGING TYPE ERRORS

Debugging Type Errors

Type errors can be confusing sometimes. Consider:

let rec concatn s n =
1f n <= 0 then

else
s ~ (concatn s (n-1))

17

Debugging Type Errors

Type errors can be confusing sometimes. Consider:

let rec concatn s n =
1f n <= 0 then

else
s ~ (concatn s (n-1))

ocamlbuild says:

Error: This expression has type int but an
expression was expected of type string

18

Type Checking Rules

Type errors can be confusing sometimes. Consider:

let rec concatn s n =
1f n <= 0 then

else
s * (concatn s (n-1))

ocamlbuild says:

Error: This expression has type int but an
expression was expected of type string

merlin inside emacs points to the error above and gives a second error:

Error: This expression has type string but an
expression was expected of type int

19

Type Checking Rules

Type errors can be confusing sometimes. Consider:

let rec concatn s n =
1f n <= 0 then

else
s * (concatn s (n-1))

ocamlbuild says:

Error: This expression has type int but an
expression was expected of type string

merlin inside emacs points to the error above and gives a second error:

Error: This expression has type string but an
expression was expected of type int

20

Type Checking Rules

Type errors can be confusing sometimes. Consider:

let rec concatn s n =
if n <= 0 then
0
else
s * (concatn s (n-1))

they don't
agree!

ocamlbuild says:

Error: This expression has type int but an
expression was expected of type string

merlin inside emacs points to the error above and gives a second error:

Error: This expression has type string but an
expression was expected of type int

21

22

Type Checking Rules

Type errors can be confusing sometimes. Consider:

they don't
agree!

let rec concatn s n =
1f n <= 0 then

0
else
s * (concatn s (n-1))

The type checker points to some place where there is disagreement.

Moral: Sometimes you need to look in an earlier branch for the error
even though the type checker points to a later branch.
The type checker doesn't know what the user wants.

A Tactic: Add Typing Annotations

let rec concatn (s:string) (n:int)
if n <= 0 then
0
else
s ~ (concatn s (n-1))

string

Error: This expression has type int but an
expression was expected of type string

23

Exercise

Given the following code:

let munge b x =
if not b then
string of int x
else
"hello"

let vy = 17

What are the types of the following expressions?
(And what must the types of f and g be?)

munge : ?°7
munge (y > 17) =: ?2°7?
munge true (f (munge false 3)) : 27

munge true (g munge) : ?2°7?

24

