
Let Expressions

Speaker: David Walker
COS 326

Princeton University

slides copyright 2020 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes

What is the single most important mathematical
concept ever developed in human history?

2

What is the single most important mathematical
concept ever developed in human history?

An answer: The mathematical variable

3

Why is the mathematical variable so important?
The mathematician says:

“Let x be some integer, we define a polynomial over x ...”

4

Why is the mathematical variable so important?
The mathematician says:

“Let x be some integer, we define a polynomial over x ...”

What is going on here? The mathematician has separated a
definition (of x) from its use (in the polynomial).

This is the most primitive kind of abstraction (x is some integer)

5

Why is the mathematical variable so important?

Abstraction is the key to controlling complexity and without it,
modern mathematics, science, and computation would not exist.

Abstraction allows for reuse of ideas, values, theorems ...
… functions and programs!

6

OCAML BASICS:
LET DECLARATIONS

7

Basic abstraction in OCaml
In OCaml, the most basic technique for factoring your code is to
use let expressions

Instead of writing this expression:

(2 + 3) * (2 + 3)

8

Abstraction & Abbreviation
In OCaml, the most basic technique for factoring your code is to
use let expressions

Instead of writing this expression:

We write this one:

(2 + 3) * (2 + 3)

let x = 2 + 3 in
x * x

9

A Few More Let Expressions

let x = 2 in
let squared = x * x in
let cubed = x * squared in
squared * cubed

10

A Few More Let Expressions

let a = "a" in
let b = "b" in
let as = a ^ a ^ a in
let bs = b ^ b ^ b in
as ^ bs

let x = 2 in
let squared = x * x in
let cubed = x * squared in
squared * cubed

11

A Technical Note: The Structure of a .ml File
12

<declaration>

<declaration>

…

Foo.ml
Every .ml file is a sequence
of declarations

These “declarations” are a little
different than “expressions”

A Technical Note: The Structure of a .ml File
13

let x = 17 + 5

let y = x + 22

Bar.ml contains two let declarations

Let declarations do not end with “in”

Let declarations have the form:

let <var> = <expression>

Bar.ml

A Technical Note: The Structure of a .ml File
14

let x =
let z = 22 in
z + z

let y =
if x < 17 then
let w = x + 1 in
2 * w

else
26

Because let declarations have this form:

let <var> = <expression>

they contain expressions

... including “let expressions” which have
the form:

let <var> = <expression> in <expression>

Baz.ml

OCaml Variables are Immutable
Once bound to a value, a variable is never modified or changed.

let x = 3

let add_three (y:int) : int = y + x

15

given a use of a variable, like this
one for x, work outwards and
upwards through a program to
find the closest enclosing
definition. That is the value
of this use forever and always.

OCaml Variables are Immutable
Once bound to a value, a variable is never modified or changed.

let x = 3

let add_three (y:int) : int = y + x

16

given a use of a variable, like this
one for x, work outwards and
upwards through a program to
find the closest enclosing
definition. That is the value
of this use forever and always.

OCaml Variables are Immutable
Once bound to a value, a variable is never modified or changed.

let x = 3

let add_three (y:int) : int = y + x

17

given a use of a variable, like this
one for x, work outwards and
upwards through a program to
find the closest enclosing
definition. That is the value
of this use forever and always.

OCaml Variables are Immutable
Once bound to a value, a variable is never modified or changed.

let x = 3

let add_three (y:int) : int = y + x

It does not
matter what
I write next.
add_three
will always
add 3!

18

OCaml Variables are Immutable
Once bound to a value, a variable is never modified or changed.

let x = 3

let add_three (y:int) : int = y + x

let x = 4

let add_four (y:int) : int = y + x

a distinct
variable that
"happens to
be spelled the
same"

19

OCaml Variables are Immutable
A use of a variable always refers to it’s closest (in terms of
syntactic distance) enclosing declaration. Hence, we say OCaml
is a statically scoped (or lexically scoped) language

let x = 3

let add_three (y:int) : int = y + x

let x = 4

let add_four (y:int) : int = y + x

let add_seven (y:int) : int =
add_three (add_four y)

we can use
add_three
without worrying
about the second
definition of x

20

OCaml Variables are Immutable
Since the two variables (both happened to be named x) are
actually different, unconnected things, we can rename them.
This is known as alpha-conversion.

let x = 3

let add_three (y:int) : int = y + x

let x = 4

let add_four (y:int) : int = y + x

let add_seven (y:int) : int =
add_three (add_four y)

you can rename
x to zzz

by replacing
the definition
and all its uses with
the new name

21

OCaml Variables are Immutable
Since the two variables (both happened to be named x) are
actually different, unconnected things, we can rename them.
This is known as alpha-conversion.

let x = 3

let add_three (y:int) : int = y + x

let zzz = 4

let add_four (y:int) : int = y + zzz

let add_seven (y:int) : int =
add_three (add_four y)

22

you can rename
x to zzz

by replacing
the definition
and all its uses with
the new name

How does OCaml execute a let expression?

let x = <expression1> in
<expression2>

23

In a nutshell:
• execute <expression1>, until you get a value v1
• substitute that value v1 for x in <expression2>
• execute <expression2>, until you get a value v2
• the result of the whole execution is v2

How does OCaml execute a let expression?

let x = 2 + 1 in x * x

24

How does OCaml execute a let expression?

let x = 2 + 1 in x * x

-->

let x = 3 in x * x

25

How does OCaml execute a let expression?

let x = 2 + 1 in x * x

-->

let x = 3 in x * x

-->

3 * 3

substitute
3 for x

26

How does OCaml execute a let expression?

let x = 2 + 1 in x * x

-->

let x = 3 in x * x

-->

3 * 3

-->

9

substitute
3 for x

27

How does OCaml execute a let expression?

let x = 2 + 1 in x * x

-->

let x = 3 in x * x

-->

3 * 3

-->

9

substitute
3 for x

Note: I write
e1 --> e2
when e1 evaluates
to e2 in one step

28

Meta-comment
29

let x = 2 in x + 3 --> 2 + 3

I defined the language in terms of itself:
By reduction of one OCaml expression to another

I’m trying to train you to think at a high level of
abstraction.

I didn’t have to mention low-level abstractions like
assembly code or registers or memory layout to tell you

how OCaml works.

OCaml expression OCaml expression

Another Example

let x = 2 in
let y = x + x in
y * x

30

Another Example

let x = 2 in
let y = x + x in
y * x

-->

substitute
2 for x

let y = 2 + 2 in
y * 2

31

Another Example

let x = 2 in
let y = x + x in
y * x

-->

-->

substitute
2 for x

let y = 2 + 2 in
y * 2

let y = 4 in
y * 2

32

Another Example

let x = 2 in
let y = x + x in
y * x

-->

-->

-->

substitute
2 for x

let y = 2 + 2 in
y * 2

let y = 4 in
y * 2

4 * 2

substitute
4 for y

33

Another Example

let x = 2 in
let y = x + x in
y * x

-->

-->

-->

substitute
2 for x

let y = 2 + 2 in
y * 2

let y = 4 in
y * 2

4 * 2
-->

8

substitute
4 for y

Moral: Let
operates by
substituting

computed values
for variables

34

Typing Let Expressions

let x = e1 in

e2

overall expression
takes on the type of e2

x granted type of e1 for use in e2

35

Typing Let Expressions

let x = e1 in

e2

x granted type of e1 for use in e2

let x = 3 + 4 in

string_of_int x

overall expression
takes on the type of e2

x has type int
for use inside the
let body

overall expression
has type string

36

Let Expressions Really Are Expressions

2 + 3

37

an expression

Let Expressions Really Are Expressions

2 + 3

38

let x = 2 + 3 in
x + x

an expression

an expression

Let Expressions Really Are Expressions

2 + 3

let x = let y = 2 + 3 in y + 5 in
1 + x

39

let x = 2 + 3 in
x + x

an expression

an expression

an expression

let expressions can
appear anywhere
other expressions
can appear. they can
be nested

Exercise

let x =
let y = 2 + 3 in y

in
let x = “1” in

x + x

40

let x =
let y = “2” ^ “3” in y

in
let x = 1 in

x + x

Which of (a) or (b) type check? Explain why.

(a) (b)

On a piece of paper (or in your favorite editor), show the step-by-step
evaluation of the example that type checks.

Critique the programming style used in these examples.

