
Introduction to OCaml

Speaker: David Walker
COS 326

Princeton University

slides copyright 2021 David Walker
permission granted to reuse these slides for non-commercial educational purposes

Why OCaml?
2

Small, orthogonal core based on the lambda calculus.
– Control is based on (recursive) functions.
– Instead of for-loops, while-loops, do-loops, iterators, etc.

• can be defined as library functions.
– Makes it easy to define semantics

Supports first-class, lexically scoped, higher-order procedures
– a.k.a. first-class functions or closures or lambdas.
– first-class: functions are data values like any other data value

• like numbers, they can be stored, defined anonymously, ...
– lexically scoped: meaning of variables determined statically.
– higher-order: functions as arguments and results

• programs passed to programs; generated from programs

These features also found in Scheme, Haskell, Scala, F#, Clojure,

Why OCaml?
3

Statically typed: debugging and testing aid
– compiler catches many silly errors before you can run the code.

• A type is worth a thousand tests
– Java is also strongly, statically typed.
– Scheme, Python, Javascript, etc. are all strongly, dynamically

typed – type errors are discovered while the code is running.
Strongly typed: compiler enforces type abstraction.

– cannot cast an integer to a record, function, string, etc.
• so we can utilize types as capabilities; crucial for local reasoning

– C/C++ are weakly typed (statically typed) languages. The compiler
will happily let you do something smart (more often stupid).

Type inference: compiler fills in types for you

Installing, Running OCaml
4

• OCaml comes with compilers:
– "ocamlc" – fast bytecode compiler
– "ocamlopt" – optimizing, native code compiler
– "ocamlbuild – a nice wrapper that computes dependencies

• And an interactive, top-level shell:
– useful for trying something out.
– "ocaml" at the prompt.
– but use the compiler most of the time

• And many other tools
– e.g., debugger, dependency generator, profiler, etc.

• See the course web pages for installation pointers
– also OCaml.org

Editing OCaml Programs
5

• Many options: pick your own poison
– Emacs

• what your professors use
• good but not great support for OCaml.
• we like it because we’re used to it
• (extensions written in elisp – a functional language!)

– Visual Studio
• haven’t used it much, but pretty popular, I believe

– Eclipse
• we’ve put up a link to an OCaml plugin
• we haven't tried it but others recommend it

– Sublime, atom
• A lot of students seem to gravitate to this

XKCD on Editors
6

AN INTRODUCTORY EXAMPLE
(OR TWO)

7

OCaml Compiler and Interpreter
• Demo:

– emacs
– ml files
– writing simple programs: hello.ml, sum.ml
– simple debugging and unit tests
– ocamlc compiler

8

OCaml Compiler and Interpreter
• Demo:

– emacs
– ml files
– writing simple programs: hello.ml, sum.ml
– simple debugging and unit tests
– ocamlc compiler

9

OCaml demo
10

OCaml demo
11

OCaml demo
12

OCaml demo
13

OCaml demo
14

OCaml demo
15

OCaml demo
16

OCaml demo
17

OCaml demo
18

OCaml demo
19

OCaml demo
20

OCaml demo
21

OCaml demo
22

OCaml demo
23

OCaml demo
24

A First OCaml Program

hello.ml:

print_string "Hello COS 326!!\n"

25

print_string "Hello COS 326!!\n"

A First OCaml Program

hello.ml:

a function its string argument
enclosed in "..."

a program
can be nothing
more than
just a single
expression
(but that is
uncommon)

26

no parens. normally call a function f like this:

f arg

(parens are used for grouping, precedence
only when necessary)

A First OCaml Program

print_string "Hello COS 326!!\n"

$ ocamlbuild hello.d.byte
$./hello.d.byte
Hello COS 326!!
$

hello.ml:

compiling and running hello.ml:

.d for debugging
(other choices .p for profiled; or none)

.byte for interpreted bytecode
(other choices .native for machine code)

27

A First OCaml Program

$ ocaml
Objective Caml Version 3.12.0

#

hello.ml:

interpreting and playing with hello.ml:

print_string "Hello COS 326!!\n"

28

A First OCaml Program

$ ocaml
Objective Caml Version 3.12.0

3 + 1;;
- : int = 4
#

hello.ml:

interpreting and playing with hello.ml:

print_string "Hello COS 326!!\n"

29

A First OCaml Program

$ ocaml
Objective Caml Version 3.12.0

3 + 1;;
- : int = 4
#use "hello.ml";;
hello cos326!!
- : unit = ()
#

hello.ml:

interpreting and playing with hello.ml:

print_string "Hello COS 326!!\n"

30

A First OCaml Program

$ ocaml
Objective Caml Version 3.12.0

3 + 1;;
- : int = 4
#use "hello.ml";;
hello cos326!!
- : unit = ()
#quit;;
$

hello.ml:

interpreting and playing with hello.ml:

print_string "Hello COS 326!!\n"

31

(* sum the numbers from 0 to n
precondition: n must be a natural number

*)
let rec sumTo (n:int) : int =
match n with
0 -> 0

| n -> n + sumTo (n-1)

let _ =
print_int (sumTo 8);
print_newline()

A Second OCaml Program

a comment
(* ... *)sumTo8.ml:

32

(* sum the numbers from 0 to n
precondition: n must be a natural number

*)
let rec sumTo (n:int) : int =
match n with
0 -> 0

| n -> n + sumTo (n-1)

let _ =
print_int (sumTo 8);
print_newline()

A Second OCaml Program

the name of the function being defined

the keyword "let" begins a definition; keyword "rec" indicates recursion

sumTo8.ml:

33

(* sum the numbers from 0 to n
precondition: n must be a natural number

*)
let rec sumTo (n:int) : int =
match n with
0 -> 0

| n -> n + sumTo (n-1)

let _ =
print_int (sumTo 8);
print_newline()

A Second OCaml Program

result type int

argument
named n
with type int

sumTo8.ml:

34

(* sum the numbers from 0 to n
precondition: n must be a natural number

*)
let rec sumTo (n:int) : int =
match n with
0 -> 0

| n’ -> n’ + sumTo (n-1)

let _ =
print_int (sumTo 8);
print_newline()

A Second OCaml Program

deconstruct the value n
using pattern matching

data to be
deconstructed
appears
between
key words
"match" and
"with"

sumTo8.ml:

35

(* sum the numbers from 0 to n
precondition: n must be a natural number

*)
let rec sumTo (n:int) : int =
match n with
0 -> 0

| n -> n + sumTo (n-1)

let _ =
print_int (sumTo 8);
print_newline()

_

A Second OCaml Program

deconstructed data matches one of 2 cases:
(i) the data matches the pattern 0, or (ii) the data matches the variable pattern n

vertical bar "|" separates the alternative patterns

sumTo8.ml:

36

(* sum the numbers from 0 to n
precondition: n must be a natural number

*)
let rec sumTo (n:int) : int =
match n with
0 -> 0

| n -> n + sumTo (n-1)

let _ =
print_int (sumTo 8);
print_newline()

A Second OCaml Program

Each branch of the match statement constructs a result

construct
the result 0

construct
a result
using a
recursive
call to sumTo

sumTo8.ml:

37

(* sum the numbers from 0 to n
precondition: n must be a natural number

*)
let rec sumTo (n:int) : int =
match n with
0 -> 0

| n -> n + sumTo (n-1)

let _ =
print_int (sumTo 8);
print_newline()

A Second OCaml Program

print the
result of
calling
sumTo on 8

print a
new line

sumTo8.ml:

38

OCAML BASICS:
EXPRESSIONS, VALUES, SIMPLE TYPES

39

Terminology: Expressions, Values, Types
Expressions are computations

– 2 + 3 is a computation

Values (a subset of the expressions) are the results of computations
– 5 is a value

Types describe collections of values and the computations that
generate those values

– int is a type

– values of type int include
• 0, 1, 2, 3, …, max_int
• -1, -2, …, min_int

40

Some simple types, values, expressions
41

Type: Values: Expressions:
int -2, 0, 42 42 * (13 + 1)

float 3.14, -1., 2e12 (3.14 +. 12.0) *. 10e6

char ’a’, ’b’, ’&’ int_of_char ’a’

string "moo", "cow" "moo" ^ "cow"
bool true, false if true then 3 else 4

unit () print_int 3

For more primitive types and functions over them,
see the OCaml Reference Manual here:

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Pervasives.html

Evaluation
42

42 * (13 + 1)

Evaluation
43

42 * (13 + 1) -->* 588

Read like this: "the expression 42 * (13 + 1) evaluates to the value 588"

The "*" is there to say that it does so in 0 or more small steps

Evaluation
44

42 * (13 + 1) -->* 588

Read like this: "the expression 42 * (13 + 1) evaluates to the value 588"

The "*" is there to say that it does so in 0 or more small steps

Here I’m telling you how to execute an OCaml expression --- ie, I’m telling you
something about the operational semantics of OCaml

More on semantics later.

Evaluation
45

42 * (13 + 1) -->* 588

(3.14 +. 12.0) *. 10e6 -->* 151400000.

int_of_char ’a’ -->* 97

"moo" ^ "cow" -->* "moocow"

if true then 3 else 4 -->* 3

print_int 3 -->* ()

Evaluation
46

1 + "hello" -->*						???	

Evaluation
47

1 + "hello" -->*						???	

"+" processes integers
"hello" is not an integer
evaluation is undefined!

Don’t worry! This expression doesn’t type check.

Aside: See this talk on Javascript:
https://www.destroyallsoftware.com/talks/wat

https://www.destroyallsoftware.com/talks/wat

OCAML BASICS:
CORE EXPRESSION SYNTAX

48

Core Expression Syntax
49

The simplest OCaml expressions e are:
• values numbers, strings, bools, ...
• id variables (x, foo, ...)
• e1 op e2 operators (x+3, ...)
• id e1 e2 … en function call (foo 3 42)
• let id = e1 in e2 local variable decl.
• if e1 then e2 else e3 a conditional
• (e) a parenthesized expression
• (e : t) an expression with its type

A note on parentheses
50

In most languages, arguments are parenthesized & separated by commas:

f(x,y,z) sum(3,4,5)

In OCaml, we don’t write the parentheses or the commas:

f x y z sum 3 4 5

But we do have to worry about grouping. For example,

f x y z same as: ((f x) y) z
not the same as: f x (y z)

The first one passes three arguments to f (x, y, and z)
The second passes two arguments to f (x, and the result of applying the

function y to z.)

OCAML BASICS:
TYPE CHECKING

51

Type Checking
Every value has a type and so does every expression

This is a concept that is familiar from Java but it becomes more
important when programming in a functional language

We write (e : t) to say that expression e has type t. eg:

2 : int "hello" : string

2 + 2 : int "I say " ^ "hello" : string

52

Type Checking Rules
There are a set of simple rules that govern type checking

– programs that do not follow the rules will not type check and
O’Caml will refuse to compile them for you (the nerve!)

– at first you may find this to be a pain …

But types are a great thing:
– help us think about how to construct our programs
– help us find stupid programming errors
– help us track down errors quickly when we edit our code
– allow us to enforce powerful invariants about data structures

53

Type Checking Rules
Example rules:

0 : int (and similarly for any other integer constant n)

"abc" : string (and similarly for any other string constant "…")(2)

(1)

54

Type Checking Rules
Example rules:

if e1 : int and e2 : int
then e1 + e2 : int

if e1 : int and e2 : int
then e1 * e2 : int

0 : int (and similarly for any other integer constant n)

"abc" : string (and similarly for any other string constant "…")(2)

(1)

(3) (4)

55

Type Checking Rules
Example rules:

if e1 : int and e2 : int
then e1 + e2 : int

if e1 : int and e2 : int
then e1 * e2 : int

if e1 : string and e2 : string
then e1 ^ e2 : string

if e : int
then string_of_int e : string

0 : int (and similarly for any other integer constant n)

"abc" : string (and similarly for any other string constant "…")(2)

(1)

(3)

(5)

(4)

(6)

56

Type Checking Rules
Example rules:

Using the rules:

if e1 : int and e2 : int
then e1 + e2 : int

if e1 : int and e2 : int
then e1 * e2 : int

if e1 : string and e2 : string
then e1 ^ e2 : string

if e : int
then string_of_int e : string

2 : int and 3 : int. (By rule 1)

0 : int (and similarly for any other integer constant n)

"abc" : string (and similarly for any other string constant "…")(2)

(1)

(3)

(5)

(4)

(6)

57

Type Checking Rules
Example rules:

Using the rules:

if e1 : int and e2 : int
then e1 + e2 : int

if e1 : int and e2 : int
then e1 * e2 : int

if e1 : string and e2 : string
then e1 ^ e2 : string

if e : int
then string_of_int e : string

2 : int and 3 : int. (By rule 1)
Therefore, (2 + 3) : int (By rule 3)

0 : int (and similarly for any other integer constant n)

"abc" : string (and similarly for any other string constant "…")(2)

(1)

(3)

(5)

(4)

(6)

58

Type Checking Rules
Example rules:

Using the rules:

if e1 : int and e2 : int
then e1 + e2 : int

if e1 : int and e2 : int
then e1 * e2 : int

if e1 : string and e2 : string
then e1 ^ e2 : string

if e : int
then string_of_int e : string

2 : int and 3 : int. (By rule 1)
Therefore, (2 + 3) : int (By rule 3)
5 : int (By rule 1)

0 : int (and similarly for any other integer constant n)

"abc" : string (and similarly for any other string constant "…")(2)

(1)

(3)

(5)

(4)

(6)

59

Type Checking Rules
Example rules:

Using the rules:

if e1 : int and e2 : int
then e1 + e2 : int

if e1 : int and e2 : int
then e1 * e2 : int

if e1 : string and e2 : string
then e1 ^ e2 : string

if e : int
then string_of_int e : string

2 : int and 3 : int. (By rule 1)
Therefore, (2 + 3) : int (By rule 3)
5 : int (By rule 1)
Therefore, (2 + 3) * 5 : int (By rule 4 and our previous work)

0 : int (and similarly for any other integer constant n)

"abc" : string (and similarly for any other string constant "…")(2)

(1)

(3)

(5)

(4)

(6)

FYI: This is a formal proof
that the expression is well-

typed!

60

Type Checking Rules
Example rules:

Another perspective:

if e1 : int and e2 : int
then e1 + e2 : int

if e1 : int and e2 : int
then e1 * e2 : int

if e1 : string and e2 : string
then e1 ^ e2 : string

if e : int
then string_of_int e : string

???? * ???? : int

0 : int (and similarly for any other integer constant n)

"abc" : string (and similarly for any other string constant "…")(2)

(1)

(3)

(5)

(4)

(6)

rule (4) for typing expressions
says I can put any expression
with type int in place of the ????

61

Type Checking Rules
Example rules:

Another perspective:

if e1 : int and e2 : int
then e1 + e2 : int

if e1 : int and e2 : int
then e1 * e2 : int

if e1 : string and e2 : string
then e1 ^ e2 : string

if e : int
then string_of_int e : string

7 * ???? : int

0 : int (and similarly for any other integer constant n)

"abc" : string (and similarly for any other string constant "…")(2)

(1)

(3)

(5)

(4)

(6)

rule (4) for typing expressions
says I can put any expression
with type int in place of the ????

62

Type Checking Rules
Example rules:

Another perspective:

if e1 : int and e2 : int
then e1 + e2 : int

if e1 : int and e2 : int
then e1 * e2 : int

if e1 : string and e2 : string
then e1 ^ e2 : string

if e : int
then string_of_int e : string

7 * (add_one 17) : int

0 : int (and similarly for any other integer constant n)

"abc" : string (and similarly for any other string constant "…")(2)

(1)

(3)

(5)

(4)

(6)

rule (4) for typing expressions
says I can put any expression
with type int in place of the ????

63

Type Checking Rules
You can always start up the OCaml interpreter to find out a type
of a simple expression:

$ ocaml
Objective Caml Version 3.12.0

#

64

Type Checking Rules
You can always start up the OCaml interpreter to find out a type
of a simple expression:

$ ocaml
Objective Caml Version 3.12.0

3 + 1;;

65

use ";;"
to end
a phrase
in the
top level

(";;" can also end a top-level phrase in a file, but I’m going to avoid using it there because then some of you will confuse it with a ";" ….)

Type Checking Rules
You can always start up the OCaml interpreter to find out a type
of a simple expression:

$ ocaml
Objective Caml Version 3.12.0

3 + 1;;
- : int = 4

press
return
and you
find out
the type
and the
value

66

Type Checking Rules
You can always start up the OCaml interpreter to find out a type
of a simple expression:

$ ocaml
Objective Caml Version 3.12.0

3 + 1;;
- : int = 4
"hello " ^ "world";;
- : string = "hello world"
#

press
return
and you
find out
the type
and the
value

67

Type Checking Rules
You can always start up the OCaml interpreter to find out a type
of a simple expression:

$ ocaml
Objective Caml Version 3.12.0

3 + 1;;
- : int = 4
"hello " ^ "world";;
- : string = "hello world"
#quit;;
$

68

Type Checking Rules
Example rules:

Violating the rules:

if e1 : int and e2 : int
then e1 + e2 : int

if e1 : int and e2 : int
then e1 * e2 : int

if e1 : string and e2 : string
then e1 ^ e2 : string

if e : int
then string_of_int e : string

"hello" : string (By rule 2)
1 : int (By rule 1)
1 + "hello" : ?? (NO TYPE! Rule 3 does not apply!)

0 : int (and similarly for any other integer constant n)

"abc" : string (and similarly for any other string constant "…")(2)

(1)

(3)

(5)

(4)

(6)

69

• Violating the rules:

• The type error message tells you the type that was expected
and the type that it inferred for your subexpression

• By the way, this was one of the nonsensical expressions that
did not evaluate to a value

• It is a good thing that this expression does not type check!
"Well typed programs do not go wrong"

Robin Milner, 1978

Type Checking Rules
Violating the rules:

The type error message tells you the type that was expected and
the type that it inferred for your subexpression
By the way, this was one of the nonsensical expressions that did
not evaluate to a value
It is a good thing that this expression does not type check!

"hello" + 1;;
Error: This expression has type string but an
expression was expected of type int

70

Type Checking Rules
Violating the rules:

A possible fix:

One of the keys to becoming a good ML programmer is to
understand type error messages.

"hello" + 1;;
Error: This expression has type string but an
expression was expected of type int

"hello" ^ (string_of_int 1);;
- : string = "hello1"

71

Type Checking Rules
What about this expression:

Why doesn't the ML type checker do us the favor of telling us the
expression will raise an exception?

3 / 0 ;;
Exception: Division_by_zero.

72

Type Checking Rules
What about this expression:

Why doesn't the ML type checker do us the favor of telling us the
expression will raise an exception?

– In general, detecting a divide-by-zero error requires we know that
the divisor evaluates to 0.

– In general, deciding whether the divisor evaluates to 0 requires
solving the halting problem:

There are type systems that will rule out divide-by-zero errors, but
they require programmers supply proofs to the type checker

3 / 0 ;;
Exception: Division_by_zero.

3 / (run_turing_machine(); 0);;

73

Isn’t that cheating?
"Well typed programs do not go wrong"

Robin Milner, 1978

(3 / 0) is well typed. Does it "go wrong?" Answer: No.

"Go wrong" is a technical term meaning, "have no defined
semantics." Raising an exception is perfectly well defined
semantics, which we can reason about, which we can handle in
ML with an exception handler.

So, it’s not cheating.

(Discussion: why do we make this distinction, anyway?)

74

Type Soundness
"Well typed programs do not go wrong"

Programming languages with this property have
sound type systems. They are called safe languages.

Safe languages are generally immune to buffer overrun
vulnerabilities, uninitialized pointer vulnerabilities, etc., etc.
(but not immune to all bugs!)

Safe languages: ML, Java, Python, …

Unsafe languages: C, C++, Pascal

75

OVERALL SUMMARY:
A SHORT INTRODUCTION TO
FUNCTIONAL PROGRAMMING

76

OCaml
OCaml is a functional programming language

– express control flow and iteration by defining functions

OCaml is a typed programming language

– the type of an expression correctly predicts the kind of value
the expression will generate when it is executed

– types help us understand and write our programs
– the type system is sound; the language is safe

77

