
AVL Trees

COS 326
Assignment #6

Princeton University

slides copyright 2020 David Walker and Andrew W. Appel
permission granted to reuse these slides for non-commercial educational purposes

AVL Trees

2

X

< X

Leaf:

Node:

> X

The difference between the height of both subtrees must be at most
one. The height of a subtree is the longest path from the root to a

Leaf.

AVL Tree Example

3

8

7 12

5 10

AVL Tree Non-Example

4

8

12

15

Subtree height difference is too great at node 8!

AVL Tree Non-Example

5

8

12

Out of order keys!

9

INSERT

How to Insert

8

7 12

insert 15 into:

10 13

How to Insert

8

7 12

insert 15 into:

10 13

15

Compare 15 to the root node

How to Insert

8

7 12

insert 15 into:

10 13

15

Recursively insert into the right subtree

How to Insert

8

7 12

insert 15 into:

10 13 15

Reach a leaf node.

How to Insert

8

7 12

insert 15 into:

10 13

Create a new subtree with 15

15

How to Insert

8

7 12

insert 15 into:

10 13

Return from recursive call to node 13.
Note that no action is needed as the height
of the nodes subtrees are 1 and 0, 1 apart.

15

How to Insert

8

7 12

insert 15 into:

10 13

Return from recursive call to node 12.
Note that no action is needed as the height
of the nodes subtrees are 2 and 1, 1 apart.

15

How to Insert

8

7 12

insert 15 into:

10 13

Return from recursive call to node 8.
The heights of the subtrees is now 3 and 1.
Action is needed to rebalance the tree!

15

How to Insert

12

8 13

insert 15 into:

10 15

Solution: Rotate the tree to the left! 12
becomes the new root and 8 becomes its
left subtree. The tree is now balanced!

7

How to Insert

12

8 13

insert 15 into:

10 157

We are done!

Key idea: When returning from a call to insert, compare the heights of
the subtrees, rotate left or right to rebalance.

How to Insert

8

7 12

insert 11 into:

10 13

11

What happens when 11 is inserted?

How to Insert

8

7 12

insert 11 into:

10 13

What happens when 11 is inserted?

11

How to Insert

12

8 13

insert 11 into:

10

11

7

Rotate Left does not work!
The tree is still unbalanced!

How to Insert

8

7 10

insert 11 into:

11

12

Rotate the subtree first in the opposite direction!

13

How to Insert

10

8 12

insert 11 into:

11 137

Now rotate left!

How to Insert

insert 11 into:

We are done!

Key idea: If we put the node in the left subtree of the right child of the
root, or the right subtree of the left child of the root, we must rotate
the subtree in the opposite direction as the tree as a whole.

10

8 12

11 137

DELETE

How to Delete

12

8 15

Delete 7 from:

10 177 13

16

How to Delete

12

8 15

Delete 7 from:

10 17

Solution: Replace with Leaf, tree is still
balanced.

13

16

How to Delete

12

8 15

Delete 17 from:

10 177 13

16

How to Delete

12

8 15

Delete 17 from:

10 16

Solution: Replace 17 with its left child, the
tree is still balanced.

7 13

How to Delete

12

8 15

Delete 8 from:

10 177 13

16

How to Delete

12

7 15

Delete 8 from:

10 17

Solution: When a node does not have a Leaf
as a child, compare the heights of the two
child nodes and replace with the taller child.
In this case the two are equal.

13

16

How to Delete

12

7 15

Now delete 10 from the new tree.
Delete 10 from:

10 1713

16

How to Delete

12

7 15

Delete 10 from:

17

Solution: Replace with Leaf. However, the
heights are now unbalanced!

13

16

How to Delete

15

12 17

Delete 17 from:

13

Solution: Rebalance in the same way as we
did for insert, except rotate in the opposite
direction as we are now making the tree
smaller.

7 16

OCAML IMPLEMENTATION

OCaml AVL Trees

type pair = key * value

type dict =
| Leaf
| Node of dict * int * pair * dict

Valid AVL trees must be:
• in order
• balanced (subtree height difference less than 2)

You will write an invariant function to check that the trees produced by
your functions are valid AVL trees.

This is going to help you debug your routines a lot.

The OCaml Insert and Remove Functions

insert: dict -> key -> value -> dict

Key Property:

If d is a valid AVL tree and insert_to_tree d k v = d’ then
• d’ is a valid AVL tree
• d’ contains all of the elements of d as well as (k,v)

remove: dict -> key -> dict

Key Property:

If d is a valid AVL tree and remove_from_tree d k = d' then
• d' is a valid AVL tree
• d' contains all of the elements of d except the one for k

