
Precept 6: File Systems

COS 318: Fall 2018

Project 6 Schedule

● Precept: Monday 12/10, 7:30pm

○ (You are here)

● Design Review: N/A

● Due: Tuesday 01/15, 5:00pm (Dean’s Date)

○ No late submissions!

Design Document

● No design review!

● Submit pdf describing design decisions +
implementation details instead

● Submit with project on Dean’s Date

● See project spec for more info

Project 6 Overview

● Goal: Implement simple UNIX-like file system

● Manage disk space with dynamic file sizes

● Implement system calls and shell commands
to interact with the file system

● Don’t worry about concurrency, permissions,
or performance

Project Description

API

● Format disk

● File

○ open, close, read,
write, seek

○ link and unlink

○ stat

● Directory

○ make, remove, stat,
etc.

● Shell commands

○ ls and chdir (cd)

Disk Layout

(Space between divisions not representative of actual size)

Superblock: Disk Metadata

● Examples:

○ Size

○ # inodes / DBs

○ Inode / DB start

○ Magic number

Inodes: File Metadata

Inodes: File Metadata

● Examples:

○ File or dir.

○ Size

○ Link count

○ etc.

fs_init

● “Constructor” for the FS

● Call block_init() to initialize the device

● Init resources used by the FS

● Format disk or mount if already formatted

○ How will you know if disk is formatted?

fs_mkfs

● Formats the disk

○ Write the super block

○ Mark inodes and data blocks as free

○ Create root directory

○ Initialize file descriptor table

File Creation and Deletion

● fs_open(): Create a new file if it does not exist
● fs_link(): Hard link to an existing file
● fs_unlink():

○ Delete a file if link count == 0
○ Delete directory entry
○ Special behavior if file is still open (look at the

project description)

File Access

● fs_open(): Open an existing file (allocate file
descriptor)

● fs_read(): Read bytes from an open file
● fs_write(): Write bytes to an open file
● fs_lseek(): Change position in a file
● fs_close(): Close an existing file (free file

descriptor)

fs_lseek() Semantics

● In this project, fs_lseek() takes only two arguments:
○ file descriptor and offset

● In Unix, lseek() takes three arguments:
○ file descriptor, offset, and whence (SEEK_SET,

SEEK_CUR, SEEK_END)
● fs_lseek() will assume whence == SEEK_SET
● What if fs_lseek() tries to seek past end of file?

(look at the project description)

Directories - Part 1

● Like a file, but contains a list of files and directories
(name to inode number mapping)

● Can read it like a file:
○ Use your file I/O functions (fs_*) to do directory

manipulation
● Always has at least two entries:

○ Current directory: “.”
○ Parent directory: “..”

Directories - Part 2

● fs_mkdir(): Make a directory
○ Create a directory entry in parent directory
○ Create the two directories “.” and “..”

● fs_rmdir(): Remove directory if empty
● fs_cd(): Change the current directory

○ Only need to implement for relative path
names

fs_mkdir() Example

int fs_mkdir(char *fileName)
{
 if (fileName exists) return ERROR;
 // allocate inode
 // allocate data blocks
 // set directory entries for “.” and “..”
 // set inode entries appropriately
 // update parent
 return SUCCESS;
}

Miscellaneous

● You don’t need to support absolute path names
● You don’t need to support recursive directory removal
● Implement a file system check (fsck) tool for debugging that verifies

integrity of:
a. Superblock magic number
b. Block allocations
c. Inode allocations
d. Block allocation map
e. Directory content
f. Etc.

Implementation

● In Linux:
○ Uses a file to simulate a disk
○ Code is provided
○ Execute ./lnxsh

● Shell supports:
○ System calls for file system
○ Commands: “ls”, “cat foo”, “create foo 200”

● You will have to write a lot of code (1,000+)

Testing

● A python script for testing is provided
● Multiple tests that each:

○ Execute the shell
○ Open an existing file system (or format a new one)
○ Write commands to the shell (i.e. “cat foo”)
○ Read output from the shell (i.e. ABCDEF)
○ Exit

● You should also write your own test cases
● Submit them with your code

Questions?

