
Project	6
File	System

COS	318
Fall	2016



Project	6:	File	System

• Goal:	Implement	a	simple	UNIX-like	file	system	
with	a	hierarchical	directory	structure.

• Read	the	project	spec	for	the	details.
• Get	a	fresh	copy	of	the	start	code	from	the	lab	

machines	(/u/318/code/project6/).
• Start	as	early as	you	can.	This	is	a	long	project	and	

you	will	have	to	write	a	lot	of	code.	



Project	6:	Schedule

• Design	Review:
- No	design	review!
- You	will	submit	a	pdf file	with	your	project	that	

describes	the	details	about	the	design	of	your	file	
system.

- Look	at	the	“Design	Document”	section	of	the	project	
description	for	the	content	of	the	document	that	you	
need	to	write.

• Due	date:	Tuesday	1/10/2016	(Dean’s	date),	
5:00pm.



Project	6:	Overview

• Implement	a	simple	UNIX-like	file	system	with	a	
hierarchical	directory	structure

• Manage	disk	space,	as	files	and	directories	grow	
and	shrink.

• Implement	commands	and	system	calls	to	browse	
the	directory	structure,	create	new	files	and	
directories,	delete	them,	etc.

• Don’t	need	to	worry	about	concurrency,	
permissions,	or	high	performance.



API

• Disk	format
• File
- open,	close,	read,	write,	seek
- link	and	unlink	(delete	a	file)
- stat

• Directory
- make,	remove,	stat,	etc.

• Shell	commands
- ls and	chdir (cd)



Disk	Layout

This	project
in	a	1MB	file	named	“disk”

Space	between	divisions	is	not	representative	of	actual	size.



Superblock	– Disk	Metadata

• Examples:
- Size
- #	of	inodes
- #	of	data	blocks
- Where	inodes start
- Where	data	blocks	start
- Magic	number



Inodes
di
re
ct

inode

metadata

in
di
re
ct

Only	direct	for	
this	project

8



Inode – Metadata

• Examples:
- File	or	directory?
- Link	count
- Size
- Etc..

9



fs_init

• A	“constructor”	for	the	FS	code.
• Call	block_init()	to	initialize	the	block	“device.”
• Initialize	data	structures	and	resources	used	by	the	

file	system.
• Format	the	disk	or	mount	it	if	it	is	already	formatted	

(create	a	mechanism	to	detect	if	the	disk	is	
formatted).



fs_mkfs

• “Makes”	a	file	system:
- Write	the	super	block;
- Mark	inodes and	data	blocks	as	free;
- Create	root	directory;
- Initialize	file	descriptor	table.



File	Creation	and	Deletion

• fs_open(),	fs_link(),	fs_unlink().
• open:	create	a	new	file	if	it	does	not	exist.
• link:	hard	link	to	a	file
- Create	a	link	to	an	existing	file

• unlink:
- Delete	a	file	if	link	count	==	0;
- Delete	directory	entry;
- Special	behavior	if	file	is	still	open	(look	at	the	project	

description).



File	Access

• open:	open	an	existing	file	(allocate	file	
descriptor).

• read:	read	bytes	from	an	open	file.
• write:	write	bytes	to	an	open	file.
• lseek:	change	position	in	a	file.
• close:	free	file	descriptor.



fs_lseek()	Semantics

• This	project	fs_lseek()	takes	only	two	arguments:
- file	descriptor	and	offset.

• Unix	lseek()	takes	three	arguments:
- File	descriptor,	offset,	whence.

• Whence:	SEEK_SET,	SEEK_CUR,	SEEK_END.
• ls_lseek()	assumes	SEEK_SET.
• What	if	lseek()	wants	to	seek	past	the	end	of	the	

file?	(look	at	the	project	description	for	the	
expected	behavior)



Directories	– Part	1

• Like	a	file:	list	of	files	and	directories:
- Name	to	inode number	mapping.

• Can	read	it	like	a	file:
- Use	your	file	I/O	functions	(fs_*)	to	do	directory	

manipulation.
• Always	has	at	least	two	entries:
- “.”	current	directory;
- “..”	parent	directory.



Directories	– Part	2

• mkdir:	make	a	directory.
- create	an	entry	in	parent	directory;
- create	two	directories:	“.”	and	“..”.

• rmdir:	remove	directory	if	empty.
• cd:	change	the	current	directory
- for	relative	path	names	only.



Example	– fs_mkdir

int fs_mkdir(char *file_name)
{

if (file_name exists) return ERROR;
// allocate inode
// allocate data blocks
// set directory entries for “.” and “..”
// set inode entries appropriately
// update parent
return SUCCESS

}



Misc

• You	don’t	need	to	support	absolute	path	names.
• You	don’t	need	to	support	recursive	directory	

removal.
• Implement	a	file	system	check	(fsck)	tool	for	

debugging	that	verifies	integrity	of:
• Superblock	magic	number;
• Block	allocations;
• Inode allocations;
• Block	allocation	map;
• Directory	content;
• Etc.



Implementation

• In	Linux:
- Uses	a	file	to	simulate	a	disk
- Code	is	provided
- Execute	./lnxsh

• Shell	supports:
- System	calls	for	file	system
- Commands:	“ls”,	“cat	foo”,	“create	foo	200”

• You	will	have	to	write	a	lot	of	code:
- Over	1,000	lines	of	code.



Testing

• A	python	script	for	testing	is	provided.
• Multiple	tests	that	each:
- execute	the	shell;
- open	an	existing	file	system	(or	format	a	new	one);
- write	commands	to	the	shell	(cat	foo);
- read	output	from	the	shell	(ABCDEF);
- exit.

• You	should	also	write	your	own	test	cases:
- submit	them	with	your	code.


