Project 6
File System

COS 318
Fall 2016



Project 6: File System

Goal: Implement a simple UNIX-like file system
with a hierarchical directory structure.

Read the project spec for the details.

Get a fresh copy of the start code from the lab
machines (/u/318/code/project6/).

Start as early as you can. This is a long project and
you will have to write a lot of code.



Project 6: Schedule

* Design Review:
— No design review!

— You will submit a pdf file with your project that
describes the details about the design of your file
system.

— Look at the “Design Document” section of the project
description for the content of the document that you
need to write.

 Due date: Tuesday 1/10/2016 (Dean’s date),
5:00pm.



Project 6: Overview

Implement a simple UNIX-like file system with a
hierarchical directory structure

Manage disk space, as files and directories grow
and shrink.

Implement commands and system calls to browse
the directory structure, create new files and
directories, delete them, etc.

Don’t need to worry about concurrency,
permissions, or high performance.



API

Disk format

File

— open, close, read, write, seek
— link and unlink (delete a file)

— stat

Directory

— make, remove, stat, etc.

Shell commands
- Is and chdir (cd)




Disk Layout

g
o> o : (\‘MQ
()‘*%L oa‘“ \0(”50O o
N S S N QO
\

1

This project
in a 1MB file named “disk”

Space between divisions is not representative of actual size.



Superblock — Disk Metadata

Examples:

— Size

— # of inodes

— # of data blocks

— Where inodes start

— Where data blocks start
— Magic number

\
O(’
o

c,\\Qe




direct

indirect

Inodes

Only direct for
this project



Inode — Metadata

Examples:
— File or directory?
— Link count

- Size
- Etc..




fs_init

A “constructor” for the FS code.
Call block_init() to initialize the block “device.”

Initialize data structures and resources used by the
file system.

Format the disk or mount it if it is already formatted
(create a mechanism to detect if the disk is
formatted).



fs mkfs

“Makes” a file system:

Write the super block;

Mark inodes and data blocks as free;
Create root directory;

Initialize file descriptor table.




File Creation and Deletion

fs_open(), fs_link(), fs_unlink().
open: create a new file if it does not exist.

link: hard link to a file
— Create a link to an existing file

unlink:

— Delete afile if link count == 0;

— Delete directory entry;

— Special behavior if file is still open (look at the project
description).



File Access

open: open an existing file (allocate file
descriptor).

read: read bytes from an open file.
write: write bytes to an open file.
Iseek: change position in a file.
close: free file descriptor.



fs Iseek() Semantics

This project fs_|seek() takes only two arguments:

— file descriptor and offset.

Unix Iseek() takes three arguments:

— File descriptor, offset, whence.
Whence: SEEK_SET, SEEK_CUR, SEEK_END.
Is_Iseek() assumes SEEK_SET.

What if Iseek() wants to seek past the end of the
file? (look at the project description for the
expected behavior)



Directories — Part 1

e Like a file: list of files and directories:

— Name to inode number mapping.

e Canreaditlike a file:

— Use your file I/O functions (fs_*) to do directory
manipulation.

* Always has at least two entries:

i“o)

- “” current directory;

o ”

— “.” parent directory.



Directories — Part 2

mkdir: make a directory.
— create an entry in parent directory;

— create two directories: “” and “..”.
rmdir: remove directory if empty.
cd: change the current directory

— for relative path names only.




Example — fs_mkdir

int fs mkdir(char *file name)
{
1f (file name exists) return ERROR;
// allocate inode
// allocate data blocks
// set directory entries for “.” and “..”"
// set inode entries appropriately
// update parent
return SUCCESS



MiscC

You don’t need to support absolute path names.

You don’t need to support recursive directory
removal.

Implement a file system check (fsck) tool for
debugging that verifies integrity of:

* Superblock magic number;

 Block allocations;

 |node allocations;

* Block allocation map;

* Directory content;

* Etc.



Implementation

* |n Linux:
— Uses a file to simulate a disk
— Code is provided
— Execute ./Inxsh

* Shell supports:
— System calls for file system

n ”

— Commands: “Is”, “cat foo”, “create foo 200"

 You will have to write a lot of code:
— Over 1,000 lines of code.



Testing

* A python script for testing is provided.

e Multiple tests that each:
— execute the shell;

— open an existing file system (or format a new one);
— write commands to the shell (cat foo);
— read output from the shell (ABCDEF);
- exit.
* You should also write your own test cases:
— submit them with your code.



