
Precept 3: Preemptive Scheduler

COS 318: Fall 2019



Project 3 Schedule

● Precept: Monday 10/14 & Tuesday 10/15, 
7:30pm - 8:20pm

● Design Review: Monday 10/21 & Tuesday 
10/22, 3:00pm - 7:00pm

● Due: Sunday 11/03, 11:55pm



Project 3 Overview

● Goal: Add support for preemptive scheduling 
and synchronization in the kernel

● Read the project spec for details

● Starter code can be found on courselab

● Start early



Project 3 Overview

● The project is divided into three parts: 

○ Timer interrupt/preemptive scheduling

○ Blocking sleep

○ Synchronization primitives

● Get each part working before starting the next

● Use the test programs provided to test each part:

○ Use the script settest to set the test you’d like to use



Project 3 Overview

1. Preemptive Scheduling: 

● Implement timer interrupt in entry.S

2. Blocking Sleep: 

● Implement in scheduler.c

3. Synchronization Primitives: 

● Implement in sync.c and sync.h

● Implement condition variables, semaphores, and barriers

● How to implement them free of race conditions?



Project 3 Test Programs

● Five test programs are provided for your convenience
● Preemptive scheduling:

○ test_regs and test_preempt
● Blocking sleep:

○ test_blocksleep
● Synchronization primitives:

○ Test_barrier and test_all (tests everything)
● You are more than welcome to create your own tests!



Preemptive Scheduling



Once a process is scheduled, 
how does the OS regain 
control of the processor?



Preemptive Scheduling

● Tasks are preempted via timer interrupt IRQ0

● A time slice determines when to preempt (time_elapsed 
variable in scheduler.c)

● IRQ0 increments the time slice in each call

● Round-robin scheduling:

○ Have one task running and the others in queue waiting

○ Save the current task (context switch) before preempting

○ Change the current running task to next task in queue



Timer Interrupt

● Tasks are preempted via timer interrupt IRQ0

● Interrupts are labeled by their interrupt request numbers (IRQ):

○ An IRQ number corresponds to a pin on the programmable 
interrupt controller (PIC)

○ The PIC is a chip that manages interrupts between devices 
and the processor

● When receiving an interrupt, how does the processor know where 
to jump to?



Interrupt Initialization

● The OS needs to initialize a table of addresses to jump to for 
handling different interrupts

● In this project, the interrupt descriptor table (IDT) is setup in 
kernel.c:init_idt()

○ Separate entry for each hardware interrupt

○ Separate entry for each software exception

○ One entry for all system calls

● Try to understand init_idt() and how the kernel services system 
calls in this assignment



Interrupt Handling

● What does the processor do on an interrupt?

○ Disables interrupts

○ Pushes the EFLAGS, CS and return IP in that order on the 
stack

○ Jumps to the interrupt handler

○ Reverses the process on the way out (iret instruction)

● In this assignment, you will implement the IRQ0 handler



Implementing the IRQ0 Handler

● Send an “end of interrupt” to the PIC

○ Allows the hardware to deliver new interrupts

● Increment the number of ticks, a kernel variable (time_elapsed) 
for keeping track of the number of timer interrupts

● Increment entry.S:disable_count:

○ A global kernel “lock” for critical sections

○ Call ENTER_CRITICAL to increment (use ENTER_CRITICAL only 
when interrupts are disabled!)



Implementing the IRQ0 Handler

● If the current running task is in “user mode,” make it yield() 
the processor

○ Use the nested_count field of the PCB to check this

● If in kernel thread or kernel context of user process, let it 
continue running

● Decrement entry.S:disable_count using LEAVE_CRITICAL

● Return control to the process using iret



Watch Out For...

● Safety: When accessing kernel data structures, prevent 
race conditions by turning interrupts off

○ Use enter_critical() and leave_critical() 
for critical sections

● Liveness: Interrupts should be on most of the time

● You need to carefully keep track of the sections of code 
where interrupts are enabled/disabled



Sleep + Synchronization



Implementing Sleep - Busy Wait?

● Starter code implements sleep w/ while loop

● What’s the problem with busy sleeping?



Implementing Sleep - Busy Wait?

● Starter code implements sleep w/ while loop

● What’s the problem with busy sleeping?

○ Wastes CPU Time

○ Even worse: if interrupts are disabled - halts the entire 
system!



Implementing Sleep - Blocking

● Use a new sleep queue

● Wake up process after n milliseconds

○ “Wake up” = put at end of ready queue

○ sleep(ms) guarantees that the process will be woken up no 
sooner than ms milliseconds, but potentially any time later.



Sleep - Things to think about

● Should interrupts be enabled or disabled?

● When should you try to wake up sleeping 
processes?

● What happens if all tasks are sleeping?



Synchronization Primitives

● Need to implement: condition variables, 
semaphores, and barriers

○ Lock implementation provided as reference

● Must work even with preemption:

○ Safety: Enable / Disable interrupts appropriately!

○ Liveness: Keep interrupts on as much as possible



Review: Condition Variables

● Properties:
○ Queue of threads waiting on condition to be true

● Operations:
○ Wait: block on condition + release lock while waiting

○ Signal: unblock one thread

○ Broadcast: unblock all waiting threads

○ (Threads must reclaim lock before running again)



Review: Semaphores

● Properties:
○ Number of “resources” available

○ Queue of waiting tasks

● Operations:
○ P / Down: decrement value + block if value < 0

○ V / Up: increment value + unblock one process



Review: Barriers

● Properties:
○ Number of tasks currently at barrier

○ Number of tasks required at barrier

○ Queue of waiting tasks

● Operations:
○ Wait: block if not all tasks have reached the barrier. 

Otherwise, unblock all waiting tasks



Tips + Other Notes

● Toughest part: handling when interrupts are 
enabled vs. disabled

○ Write helper functions as necessary

○ ASSERT is your friend!

● Review lecture slides (preemption, sync)

● Remember to signup for design reviews

https://www.cs.princeton.edu/courses/archive/fall19/cos318/lectures/5.ThreadsImplementation.pdf
https://www.cs.princeton.edu/courses/archive/fall19/cos318/lectures/7.SemaphoreMonitor.pdf


Questions?


