Project 3
Preemptive Scheduler

COS 318
Fall 2015



Project 3: Preemptive Scheduler

%f*
.

* Goal: Add support for preemptive scheduling and
synchronization to the kernel.

 Read the project spec for the details.

* Get a fresh copy of the start code from the lab
machines. (/u/318/code/project3/)

e Start as early as you can and get as much done as
possible by the design review.



Project 3: Schedule

* Design Review:
— Sign up on the project page;
— Please, draw pictures and write your idea down (1
piece of paper).
* Due date: Tuesday, 11/10, 11:55pm.



Project 3: Schedule

Design Review:

— Thursday, 10/29;
— Answer the questions:

v
v

Irq0_entry: The workflow of the timer interrupt;

Blocking sleep:
<> How do you make a task sleep and wake up?

<> How do you handle the case when every task is sleeping and the
ready queue is empty?

Synchronization primitives — condition variables,
semaphores, barriers:
<> For each one, describe the data structure that you will use;

< The pseudo code for condition wait, semaphore up,
semaphore down, and barrier wait.



Project 3: Overview

The project is divided into three phases:

— Timer interrupt/preemptive scheduling;

— Blocking sleep;

— Synchronization primitives.

Get each phase working before starting on the
next one.

Use provided test programs to test each
component:

— Use the script settest to set the test you want to
use.



Project 3: Overview

Implement preemptive scheduling:

— Respond to timer interrupt: entry.S;

— Blocking sleep: scheduler.c.

Implement synchronization primitives: sync.c and
sync.h:

— What are the properties of condition variables,
semaphores, and barriers?

— How do you implement them free of race condition?

Be careful: turn interrupts on/off properly:
— Safety and liveness properties.



Test Programs

Five test programs are provided for your
convenience.

Preemptive scheduling:

- test_regs and test_preempt.

Blocking sleep:

— test_blocksleep.

Synchronization primitives:

— test_barrier, test_all (tests everything).

Feel free to create your own test programs!



Pre-emptive scheduling

Once a process is scheduled, how
does the OS regain control of the
processor?



Pre-emptive scheduling

Tasks are preempted via timer interrupt IRQO.

A time slice determines when to preempt
(time elapsed variable in scheduler.c).

IRQO increments the time slice in each call.

Round-robin scheduling:

 Have one task running and the others in queue
waiting;

e Save the current task before preempting;

 Change the current running task to the next one in
the queue.



The timer interrupt

Tasks are pre-empted through the timer interrupt:

— Gives the OS the ability to decide on letting the current
task continue.

Interrupts are labeled by their interrupt request
numbers (IRQ):

An IRQ number corresponds to a pin on the
programmable interrupt controller (PIC);

— PICis a chip that manages interrupts between devices and
the processor;

— The timer corresponds to IRQ 0.

When receiving an interrupt, how does the processor
know where to jump to?



Interrupt initialization

The OS needs to initialize a table of addresses to
jump to for handling interrupts.

In this project, the interrupt descriptor table (IDT)
is setup in kernel.c:init_idt().

— A separate entry for each hw interrupt;
— A separate entry for each sw exception;
— One entry for all system calls.

You are encouraged to understand init_idt() and

how the kernel services system calls in this
project.



Interrupt handling

What does the processor do on an interrupt?

Disable interrupts;

Push the flags, CS and return IP in that order on the
stack;

Jump to the interrupt handler;
Reverse the process on the way out (iret instruction).

In this project, you will implement the IRQ 0
handler:

Crucial for a pre-emptive scheduling OS.



Implementing the IRQ 0 handler

N &
.

 Send an “end of interrupt” to the PIC:
— Allow the hw to deliver new interrupts.

 |Increment the number of ticks, a kernel variable
(time elapsed) for keeping track of the number
of timer interrupts:

— Timer initialized so that each tick corresponds to 1ms in
real time.

* |ncrement entry.S:disable count:

— A global kernel “lock” for critical sections

— Call ENTER_CRITICAL to increment (use ENTER_CRITICAL
only when interrupts are disabled!)



Implementing the IRQ 0 handler %?

-
;.

* |fthe current running task is in “user mode,”
make it yield() the processor

— Use the nested count field of the PCB to check this.

 |fin kernel thread or kernel context of user
process, let it continue running.

* Decrement entry.S:disable count using
_[EAVE_CRITICAL

* Return control to the process using iret.




Watch out for ...

Safety: when accessing kernel data structures,
prevent race conditions by turning interrupts off

- Useenter critical()and leave criticall)
for critical sections.

Liveness: interrupt should be on most of the time.

You need to carefully keep track of the sections of
code where interrupts are enabled/disabled.



Implement process sleep()

 Option 1: Busy sleeping

- Template code (schedler.c:do_sleep()) has a “busy-
wait” version of sleep, where the kernel uses a while
loop.

* What's the problem with option 17

* How to implement a “blocking” version of sleep()?



Implement process sleep()

Option 2: Blocking sleep

Use your own “sleep queue:”
— This is not the ready queue;

Do the timing using number of ticks;

Wake up a process when the number of ticks reaches
a specific value:

— sleep(ms) guarantees that the process will be waken up no
sooner than ms milliseconds, but it can potentially be any
time later.

Carefully handle the case when all tasks are sleeping!

When does the kernel try to wake up sleeping
processes?



Synchronization primitives .
* |Implement condition variables, semaphores, and
barriers:
— An implementation of locks is available.

* You need to design the required data structures
and implement the primitives.

* All your primitives must work correctly on the
face of pre-emption:
— Safety: Turn interrupts on and off properly!
— Liveness: Keep interrupts on as much as possible.



Review: condition variables

Properties:

— Queue of threads that are waiting on condition to
become true;

— Part of a monitor (locks are implemented for you).

Two main operations:

— Wait: block on a condition and release the mutex
while waiting;

— Signal: unblock once condition is true.
Broadcast operation notifies all waiting threads.

Refer to the slides of the 10/7 lecture



Review: semaphores

* Properties:
— Control access to a common resource,

— A value keeps track of the number of units of a
resource that is currently available;

— Queue of processes that are waiting.

* Two main operations:

— Down: decrement value and block the process if the
decremented value is less than zero;

— Up: increment value and unblock one waiting process.
 Refer to the slides of the 10/7 lecture



Review: barriers

* Properties:

— A barrier for a group of tasks is a location in code at
which each task of the group must stop until all
other tasks reach the barrier;

— Keep track of the number of threads at barrier and
the number of threads running;

— Maintain queue of processes that are waiting.

* Main operations:

— Wait: block the task if not all the tasks have reached
the barrier. Otherwise, unblock all.

 Refer to the slides of the 10/7 lecture



