Project 2
Non-preemptive Kernel

COS 318
Fall 2016

Project 2: Schedule

Design Review:
Monday, 10/10;
Answer the questions:

v

v

Process Control Block: What will be in your PCB and what will it
be initialized to?

Context Switching: How will you save and restore a task’s
context? Should anything special be done for the first task?

Processes: What, if any, are the differences between threads and
processes and how they are handled?

Mutual Exclusion: What'’s your plan for implementing mutual
exclusion?

Scheduling: Look at the project web page for an execution
example.

Project 2: Schedule

* Design Review:
— Sign up on the project page;
— Please, draw pictures and write your idea down (1
piece of paper).

* Due date: Tuesday, 10/18, 11:55pm.

Project 2: Overview

Goal: Build a non-preemptive kernel that can
switch between different tasks (task = process or
kernel thread).

Read the project spec for more details.
Start early.

What is a non-preemptive
kernel?

* Current running task will lose its
CPU or running state:

e 1.vield
2. block: 1/0 operation; lock
(thread)

e 3. exit

What is a non-preemptive kernel?

COS 318:

go_to_class();
go_to precept();
yield();

thinking ();
design_review()
yield();

coding();

exit();

Life:

have_fun();

yield();

play();
yield();

do_random_stuff()
yield();

What is a non-preemptive kernel?

COS 318: Life:

go_to_class(); have_fun();
go_to_precept(); yield();

yield(); play();

thinking (); yield();
design_review() do_random_ stuff()
vield(); yield();

coding();

exit(); .

What you need to deal with

1. Process control blocks (PCB).
2. User and kernel stack.

3. Context switching procedure.
4. Basic system call mechanism.
5. Mutual exclusion.

Assumptions for this project

%f’
(e~ e

Protected Mode -> don’t worry about segment
register

Non-preemptive tasks:

— run until they yield, exit or block.

Fixed number of tasks:

— allocate per-task state(PCB) statically in your program.
— Each task’s stack size is fixed.

1. Process Control Block

Defined in kernel.h. and should be Initialized in
kernel.c:_start();

What is its purpose?

What should be in the PCB?
- PID

— Stack info?

— All registers?

— What else?

2. Allocating stacks

Allocate separate stacks for tasks in kernel.c:
_start()

Processes have two stacks(theoratically):

— user stack — for the process to use;

— kernel stack — for the kernel to use when executing
system calls on behalf of the process.

— Option: only use one stack!
Kernel threads need only one stack.

Suggestion: put them in memory 0x40000-
0x52000:

— 4kb for the stack should be enough.

3. Context Switch

Implement a queue structure first!!!!

Ready queue: Contains all PCBs or addresses of
all PCBs of ready tasks.

Blocked queue:

When do you need to push or pop your task?

3. Context Switch

1. Save state of task into the PCB. (Optional)

2. Push the current PCB into the ready queue or
block queue. (Optional)

3. Pop the PCB of new task from ready queue.
4. Restore the state of new task.
5. Start new task.

3. Context Switch
Save state of tasks

When a task resumes control of CPU, it shouldn’t
have to care about what happened when it was not
running.

— save general purpose registers (%eay, ..., including %esp);
— save flags.

— instruction pointer?

Where do you save these things?
- PCB.

3. Finding the next task

The kernel must keep track of which tasks have
not exited yet.

Run the task that has been inactive for the
longest time.

What’s the natural data structure?

— Please explain your design in the design review!

3. Calling yield()

To call yield(), a task needs the addresses of the
functions and be able to access these addresses.

Kernel threads: no problem!
— scheduler.c: do_yield().

User processes: should not have direct access.
— Now, how to get access?

4. System calls

* vyield() is an example of a system call.

 To make a system call, typically a process:

— pushes a system call number and its arguments onto
the stack;

— uses an interrupt/trap mechanism to elevate
privileges and jump into kernel.

 Two system calls: yield() and exit().

4. Jumping into the kernel:
kernel entry()

 kernel.c: start() stores the address of
cernel_entry at ENTRY_POINT (0xf00).

* Processes make system calls by:

— Loading the address of kernel_entry from
ENTRY_POINT;

— Calling the function at this address with a system call
number as an argument.

e kernel_entry (syscall _no) must save the registers
and switch to the kernel stack, and reverse the
process on the way out.

Memory layout
0x00000

0x00F00 ENTRY_POINT
0x10000 Process 1
0x20000 Process 2
0x30000 Process 3
0x40000 Stacks

Kernel Stack
Yelds38 (set by bootblock.s)

0xA0000 Video RAM

5. Mutual exclusion through
locks

Lock-based synchronization is related to thread
scheduling.

The calls available to threads are:

- lock_init(lock_t *);

— lock _acquire(lock_t *);

— lock release(lock t *).

Precise semantics we want are described in the
project specification.

There is exactly one correct trace.

Timing a context switch

e util.c: get timer() returns number of cycles since
boot.

* There is only one process for your timing code,

but it is given twice in tasks.c:

— use a global variable to distinguish the first execution
from the second.

Things to thing about...

What should you do to jump to a kernel thread for
the first time?

How to save CPU state into the PCB? In what
order?

Code up and test incrementally.
— Most effort spent in debugging, so keep it simple.
Start early.

— Plenty of tricky bits in this assignment.

