Project 1: Bootloader

COS 318
Fall 2015



Project 1: Schedule

Design Review

- Monday, 9/28

— 10-min time slots from 1:30pm-6:20pm

— Write functions print char and print string

— Answer the questions:
v" How to move the kernel from disk to memory?
v" How to create the disk image?

Due date: Sunday, 10/4, 11:55pm



General Suggestions

Read assembly _example.s in start code pkg
— /u/318 (subdirs: bin code share)

Get bootblock.s working before starting on
createimage.c

Read documentation on AT&T syntax x86 Assembly
anguage

Read provided documentation on ELF format

Start as early as you can and get as much done as
possible by the design review

If you’re working on the provided VM, copy the start
code from a lab machine




Project 1 Overview

e Write a bootloader: bootblock.s

— How to set up and start running the OS
— Written in X86 Assembly language (AT&T syntax)

* Implement a tool to create a bootable OS
image: createimage.c

— Bootable image contains bootloader and kernel
— How are executable files structured?
— Become familiar with ELF format



Boot Process

When powered up, nothing in RAM, so

how do we get started? +— 0x100000 = 1MB
— Resort to hardware -

~  Load BIOS from ROM DEVICES |
BIOS: VGA DISPLAY

— Minimal functionality

< 0xC0000

< 0xA0000 = 640KB

— Initialization of I/O devices
— Search for bootable devices

| mosoara |



Loading the Bootloader

 Found bootable storage volume:
— HDD, USB, Floppy Memory

— Load bootloader -"— RO
<+ 0xF0000

* How is this done? DEVICES
— Load first sector (512 bytes) , —de— 0xC0000
. VGADISPLAY
— Memory location: 0x7c00 e AT R

— Switch control to this location
to launch the bootloader

< 0x07c¢00 (bootloader)

| mospara |



The Bootloader

e Three tasks:

— Load the kernel into memory
— Setup the kernel stack
— Switch control to the kernel

Disk

Bootloader

Kernel

Memory

-“_ 0x100000 =1MB
< OxF0000

DEVICES

< 0xC0000

VGADISPLAY

‘ 0xA0000 = 640KB

“ 0x07¢00 (bootloader)

KFRNEL

+— 0x1000

0x0



The Master Boot Record (MBR) %?

* The MBR is loaded by BIOS at physical
address 0x7c00, with %dl set to the drive
number that the MBR was loaded from.

* For more information:

— http://wiki.osdev.org/MBR (x86)
— http://wiki.osdev.org/Partition Table




X86 Assembly — Quick Tutorial

1) {q

gl
B
L

About numbers, need good bookkeeping
Move data, perform simple arithmetic
Need a lot of steps to do useful things
KEY:

— Understand memory addresses
— Know where things are in memory



X86 Assembly — Quick Tutorial

General-purpose registers: 8, 16, and 32 bits

CPU State: Register Set

0 16-bit 32-bit

31 16 15 8 7
AH | AL AX
BH BL BX
CH CL CX
DH DL DX
BP
SI
DI
SP

EAX
EBX
ECX
EDX
EBP
ESI

EDI

ESP

N &
.

Segment registers (16 bits)

CS
DS
SS
ES
FS
GS

Instruction Pointer (32 bits): EIP

Flags (32 bit): EFLAGS



X86 Assembly — Quick Tutorial %?

)

4 ¥
[SUB NUFINE——

Function of flags:
— Control the behavior of CPU
— Save the status of last instruction

Important flags:

— CF: carry flag

— ZF: zero flag

— SF:sign flag

— IF:interrupt (sti, cli)
— DF: direction (std, cld)



Memory Addressing

* 1MB of memory:
— Valid address range: 0x00000 — OxFFFFF

 Real-mode segmented model:
— See full 1IMB with 20-bit addresses
— 16-bit segments and 16-bit offsets



Memory Addressing

Format (AT&T syntax):
segment:displacement(base,index)

Offset = Base + Index + Displacement
Address = (Segment * 16) + Offset
Displacement: Constant

Base: %bx, %bp

Index: %si, %di

Segment: %cs, %ds, %ss, %es, %fs, %gs



Memory Addressing (data)

segment:displacement(base,index)
Components are optional

Default segment:

- %bp: %ss

—  %bx, %si, %di: %ds

— You can override: %es:(%bx)

Examples:

- (%si) = %ds:(%si)

- (%bp) = %ss:(%bp)

- (%bs,%si) = %ds:(%bx,%si)
- +4(%bp) = %ss:+4(%bp)
- 100 = %ds:100

- %ds:-10(%bx,%si)



AT&T Syntax

Prefix register names with % (e.g. %ax)
Instruction format: instr src,dest

— movw  %ax,%bx

Prefix constants (immediate values) with S
- movw  S1,%ax

Suffix instructions with size of data
— b for byte, w for word (16 bits), | for long (32 bits)



Instructions: arithmetic & logic .

add/sub{l,w,b} source,dest
inc/dec/neg{l,w,b} dest
cmp{l,w,b} source,dest
and/or/xor{l,w,b} source,dest

Restrictions

— No more than one memory operand



Instructions: Data Transfer

mov{l,w,b} source,dest

xchg{l,w,b} dest

movsb/movsw

- %es:(%di) € %ds:(%si)

— Often used with %cx to move a number of bytes

o movw  SO0x10,%cx
o rep MOVSW

Segment registers can only appear with registers



Instructions: stack access

 pushw source
- %sp € %sp—2
—  %ss:(%sp) € source
« popw dest
- dest € %ss:(%sp)
- %sp € %sp + 2
* Set up the stack before you actually use it



Instructions: Control Flow

jmp label

- %ip € label

limp NEW_CS,offset
- %cs € NEW_CS

- %ip € offset

call label

— push %ip +7?
- %ip € label
ret

- pop %ip
Icall and Iret



Instructions: Conditional Jump ‘

™ g
« j* label
- jump to label if flag * is 1
* jn* label
- jump to label if flag * is O
* *:bits of %eflags

—  Examples: js, jz, jc, jns, jnz, jnc



Assembly Program Structure

Assembler directives:

— Not instructions
— Segment the program

.text begins code segment
.globl defines a list of symbols as global
.data begins data segment

.equ defines a constant (like #define)
- e.g..equ ZERO,S0x00

.byte, .word, .asciz reserve space in memory



BIOS Services

* Use BIOS services through INT instruction:

— Store the parameters in the registers
— Trigger a software interrupt

. int INT_NUM

— int SOx10 # video services
- int SOx13 # disk services
- int SOx16 # keyboard services



BIOS INT Ox13

Function 2 reads from disk
- %ah: 2

—  %al: number of sectors to read
—  %ch: cylinder number bits 0-7

- %cl: sector number bits 0-5; bits 6-7 are bits 8-9 of the cylinder
number

- %dh: starting head number
- %dl: drive number
- %es:%bx: pointer to memory region to place data read from disk

Returns:

—  %ah: return status (O if successful)
—  Carry flag = 0 successful, = 1 if error occurred

For more information, visit
http://en.wikipedia.org/wiki/Cylinder-head-sector




Kernel Debugging

Use bochsdbg provided in the bin directory
of the start code

Use the help command to learn about the
other commands and parameters



Kernel Debugging

Useful commands:

r | reg | regs | registers — show the registers
sreg — shows the segment registers
b —set a breakpoint

s —step
N — next
c — continue

d | del | delete <n>— delete a breakpoint

bpd <n>—disable a breakpoint

bpe <n>— enable a breakpoint

Xp /n <addr>— exame memory at physical address <addr>
u | disasm | dissassemble /count <start> <end>



ELF Format

Executable and linking format
Created by assembler and link editor

Object file: binary representation of programs
intended to execute directly on a processor

Support various processors/architectures:

— represent control data in a machine-independent format



ELF Object File Format

 Header (pp. 1-3 —1-5):
— Beginning of file
— Roadmap, file organization

 Program header table (p. 2-2): Execution View

* Array, each element describes a ELF Header
segment Program Header Table

* Tells system how to create the Segment 1
process image Segment 2

* Files used to create an executable
program must have a program Section Header Table
header. optional

p. 1-1in the ELF manual



