
First Precept!
COS 318: Operating Systems

Precept Objectives:
In precepts we will usually cover two components:

- Outline of assignment, and what is necessary to know/do
- Understanding why the assignment is necessary & useful for Operating

Systems

Today we will also be going over some of the high-level details of the course, and
covering x86 asm, which is necessary for the 1st assignment.

Icebreaker
Because this may be your first in-person precepts in a while, it would be good to

meet the other people interested in Operating Systems!

High Level Objectives of OS
Below, sorted by amount of time to learn & difficulty to achieve:

1. Be able to understand the various functions and structure of an OS
a. Better understand the interface w/ the system in user programs

2. Can read & understand existing OS source, given enough time
3. Can modify existing OSs (Linux Patches!)
4. Can develop new components/structure of an OS

- Google has Fuchsia & Android, Microsoft has Windows, Apple has
MacOS/iOS

- Plenty of others, like VMWare which have OS adjacent services

Today’s Material
- Timeline for Project 1

- Also covering what is expected in the design review

- Review of x86 assembly (or introduction for those who used ARM) which
should be sufficient for doing the 1st assignment

Project 1 Schedule

● Design Review: Mon(9/13) & Wed(9/15)

○ Sign up for 10-min slot from Mon (8:30pm-10:30pm)
or Wed (3pm-7pm)

○ Complete set up and answer posted questions

● Project 1 Precept: Mon (9/13) & Tue (9/14),
7:30pm - 8:20pm. Due: Sun (9/26), 11:55pm

https://www.cs.princeton.edu/courses/archive/fall21/cos318/projects/signup/1.cgi

Design Review
● USBs will be given at the Design Review

● Write print_char and print_string assembly functions

● Be ready to describe:
○ How to move the kernel from disk to memory

○ How to create disk image

○ (More specific guidelines are provided on the project page)

x86 Assembly Tutorial

● x86/IA-32/i386 Assembly Overview

Components:

○ Registers, Flags, Memory Addressing, Instructions,
Stack / Calling Convention, Directives, Segments

● BIOS

● GDB

Registers
General Purpose Registers: 8,16,32 bits

CS

DS

SS

ES

FS

GS

Segment Registers: 16 bits

Instruction Pointer (EIP): 32 bits

Flags (EFLAGS): 32 bits

Flags are single bits in the EFLAGS register, where each bit has a different
purpose such as:

● Controlling the behavior of CPU

● Saving the status of the last instruction

● More details at: https://en.wikipedia.org/wiki/FLAGS_register

Flags

https://en.wikipedia.org/wiki/FLAGS_register

Flags
● Status:

○ CF: Carry flag

○ ZF: Zero flag (op = 0)

○ SF: Sign flag (op < 0)

● Control Flags:
○ IF: Interrupt flag (sti, cli), En/Disable interrupts

AT&T Syntax
● Instruction format: `instr src, dest`

○ `movw %ax,%bx`

● Prefix register names with %: %ax
● Prefix constants (immediate values) with $

○ `movw $1,%ax`

● Suffix instructions with size of data
○ b for byte (8 bit), w for word (16 bit), l for long (32 bit)
○ i.e. movb, movw, movl

Memory Addressing in Real Mode

● 1MB memory

○ Valid address range: 0x00000-0xFFFFF= 20 bits = 1MB

● 16-bit segments and 16-bit offsets into each
segment: (segment << 4) + offset

Memory Addressing (Real Mode)
● Format (AT&T syntax):

○ segment:displacement(base,index,scale)

● Offset = Base + Index * Scale + Displacement

● Address = (Segment << 4) + Offset

● Displacement/Scale must be a constant w/o $

● register that could be base: i.e. %bx, %bp

● Register that could be index: i.e. %si, %di

● Segment registers: %cs, %ds, %ss, %es, %fs, %gs

Instructions: Arithmetic & Logic
● add/sub{l,w,b} source,dest (dest - source)

● inc/dec/neg{l,w,b} dest

● cmp{l,w,b} source,dest (dest > source)

● and/or/xor{l,w,b} source,dest ...

● Restrictions
○ No more than one memory operand, other must be register

Instructions: Data Transfer
● mov{l,w,b} source, dest

● xchg{l,w,b} source, dest

● movsb/movsw
○ %es:(%di) ← %ds:(%si), must be these registers

○ Often used with %cx to move a number of bytes

■ movw $0x10,%cx

■ rep movsw

● Segment registers can only address mem w/ registers

Stack Layout
● Grows from high to low

○ Lowest value address = “top” of stack

● %sp points to top of the stack

○ Used to reference temporary variables

● %bp points to bottom of stack frame

○ Used for local vars + function args.
%sp

%sp + 4
temp var. 1

(temp var. n …)

callee-save reg 1

(callee-save regs)

(local var. n …)

local var. 1
old %ebp

return address
function arg. 1

(function arg. n …)

...

%bp

%bp - 4

%bp + 4

%bp + 8

Calling Convention
● When calling a function:

○ 1. Push caller-save regs onto stack

○ 2. Push function args onto stack

○ 3. Push return address then jump

● In function after call:
○ 1. Push old %bp + set %bp = %sp

○ 2. Allocate space for local variables

○ 3. Push callee-save regs if necessary %sp

%sp + 4
temp var. 1

(temp var. n …)

callee-save reg 1

(callee-save regs)

(local var. n …)

local var. 1
old %ebp

return address
function arg. 1

(function arg. n …)

...

%bp

%bp - 4

%bp + 4

%bp + 8

Instructions: Stack Access

● pushl source
○ %sp ← %sp - 4

○ %ss:(%sp) ← source

● popl dest

○ dest ← %ss:(%sp)

○ %sp ← %sp + 4

%sp

%sp + 4
temp var. 1

(temp var. n …)

callee-save reg 1

(callee-save regs)

(local var. n …)

local var. 1
old %ebp

return address
function arg. 1

(function arg. n …)

...

%bp

%bp - 4

%bp + 4

%bp + 8

Instructions: Control Flow

● jmp label
○ %eip ← label

● ljmp NEW_CS, offset

○ %cs ← NEW_CS

○ %eip ← offset

● call label
○ push %eip

○ %eip ← label

● ret

○ pop %eip

Instructions: Conditional Jump

● Relies on %eflags bits
○ Most arithmetic operations change %eflags

● j* label
○ Jump to label if * flag is 1, can be z(ero), e(qual), etc

● jn* label
○ Jump to label if * flag is 0

Assembler Directives
● Commands that “direct” the assembler

○ Are not instructions

● Examples:

○ .globl - defines a list of symbols as global

○ .equ - defines a constant (like #define)

○ .bytes, .word, .asciz - reserve space in RO memory

https://docs.oracle.com/cd/E26502_01/html/E28388/eoiyg.html

https://docs.oracle.com/cd/E26502_01/html/E28388/eoiyg.html

Assembler Segments
● Organize memory by data properties

○ .text - holds executable instructions

○ .bss - holds zero-initialized data (e.g. static int i;)

○ .data - holds initialized data (e.g. char c = ‘a’;)

○ .rodata - holds read-only data

● Stack - Initialized by linker & loader

● Heap - Start defined by compiler, contents by programmer
(usually thru an included library)

BIOS = Basic Input/Output System
- Firmware (compiled with the device itself)
- Configures buses/connections to and from various hardware devices
- Setups RAM for usage, puts CPU in 20-bit Real Mode
- Determines which device (CD, USB, etc) has a loadable boot sequence.

- Loads boot sequence into RAM, then transfers control to top of boot sequence

- Afterwards, BIOS provides abstractions over low-level interfaces, such as
reading/writing from external disks

- Source:
- https://wiki.osdev.org/System_Initialization_(x86)
- https://wiki.osdev.org/BIOS

https://wiki.osdev.org/System_Initialization_(x86)
https://wiki.osdev.org/BIOS

BIOS Services

● Use BIOS services through `int` instruction
○ Store parameters in specified registers, such as AH/AX

○ Software Interrupt: triggers a func in firmware

● asm: `int SERVICE_NUM`
○ i.e. int $0x10: Video services, int $0x13: Disk services

Useful GDB Commands
● r - show register values

● sreg - show segment registers

● s - step into instruction

● n - next instruction

● c - continue

● u <start> <stop> - disassembles
C code into assembly

● b - set a breakpoint

● d <n> - delete a breakpoint

● bpd / bpe <n> - disable /
enable a breakpoint

● x/Nx addr - display hex dump
of N words, starting at addr

● x/Ni addr - display N
instructions, starting at addr

Assembly can be useful
In order to understand efficiency of implementation, sometimes looking at the
assembly of generated code can be useful:

https://godbolt.org/z/5rxdz8s8K

https://godbolt.org/z/5rxdz8s8K

