
Precept 6: File Systems

COS 318: Fall 2020

Project 6 Schedule

● Precept: Monday 11/23 and Tuesday 11/24, 7:30pm –
8:20pm

Last Precept of the semester 😢😢

● Due: Tuesday 12/08, 5:00pm (Dean’s Date)

○ No late submissions (due to University Policy)

Design Document

● No design review 😮😮!
● Submit pdf describing design decisions+

implementation details instead.

● Submit with project onDean’s Date.

● See project spec for more info

● 5 page LIMIT

Project 6 Overview

● Goal: Implement simple UNIX-likefile system

● Manage disk space with dynamic file sizes
● Implement system calls (+1 shell command) to allow

shell to interact with the file system.

● Don’t worry about
concurrency, permissions, orperformance

Project Description

API

• Format disk

• File
○ open, close
○ read, write, seek

○ link and unlink

• Directory
○ mkdir, rmdir
○ cd, stat

• “ls” shell command

Disk Layout

Order and size of sections may change in your system
EXCEPT for the SuperBlock!

In this project, a FS_SIZE byte file
named “disk”

Superblock: Disk Metadata

• First block in the File System (0 in your image)

• Should keep track of:

o Magic number

o File System Size

○ Section information

○ Other info you may find
useful.

Block Allocation Map

• Keep track of available data blocks.

• Data Structure (Describe in your Design Document!)

• HINT: For every block, you only need to know if it is FREE or IN_USE.

Inodes: File Metadata

Inodes: File Metadata

● Examples:

○ File or dir.

○ Size
○ Link count

○ and possibly more...

(for example, is the inode free?)

System Calls

fs_init

● “Constructor” for the FS

● Call block_init()to initialize the device

● Init resources used by the FS (i.e. non-persistent)

o File Descriptor Table

● Format disk or mount if already formatted

○ How will you know ifdisk is formatted?

fs_mkfs

• Formats the disk
○ Write a new superblock

○ Mark inodes and data blocks as FREE

○ Create root directory (/)

○ Clear File Descriptor Table

• May be called by fs_init or directly by the shell!

File Creation and Deletion

● fs_open(): Create a new file if it does not exist
● fs_link(): Hard link to an existing file
● fs_unlink():

○ Decrease the link_count
○ Remove directory entry
○ Delete file if link_count == 0 and file is not open
○ Open files with no links will be deleted when CLOSED!

File Access

● fs_open(): Open an existing file (allocate file descriptor)

● fs_read(): Read bytes from an open file
● fs_write(): Write bytes to an open file
● fs_lseek(): Change position in a file
● fs_close(): Close an existing file (free file descriptor)

fs_lseek() Semantics

● In this project, fs_lseek() takes only two arguments:
○ file descriptor and offset

● In Unix, lseek() takes three arguments:
○ file descriptor, offset, and whence (SEEK_SET,

SEEK_CUR, SEEK_END)
● fs_lseek()will assume whence == SEEK_SET

● What if fs_lseek() tries to seek past end of file?
Then move offset. Pad with 0s on fs_write past the end.

Directories - Part 1

● Like a file, but contains a list of files and directories (name to
inode number mapping)

● Can read it like a file:
○ Use your file I/O functions (fs_*) to do directory

manipulation
● Always has at least two entries:

○ Current directory: “.”
○ Parent directory: “..” (root points to itself!)

Directories - Part 2

● fs_mkdir():

○ Create a directory entry in parent directory

○ Make new directory file.

○ Add two entries “.” and “..”
● fs_rmdir(): Remove directory ONLY if empty
● fs_cd():

o Change the current directory
○ Only need to implement for relative path names

Directories - Part 3

● Directories in this assignment can span MULTIPLE blocks.
● Your directories should take the smallest #blocks possible!

● On fs_unlink and fs_rmdir, if the number of blocks needed
goes down, you should change your directory to take less
blocks!

● Example, if each entry is 50-bytes and each block is 512-bytes,
11 entries should fit in 2 blocks. Deleting an entry should resize
the directory and free 1 block!

fs_mkdir() Pseudo-code

int fs_mkdir(char *fileName)
{

if (fileName exists) return ERROR;
// allocate inode
// allocate data blocks
// set directory entries for “.” and “..”
// set inode entries appropriately
// update parent
return SUCCESS;

}

Miscellaneous

● All path names are filenames! All operations within current directory
● You don’t need to support recursive directory removal

● Implement a file system check (fsck) tool for debugging thatverifies
integrity of:
a. Superblock magic number
b. Blockallocations
c. Inode allocations
d. Block allocation map
e. Directory content
f. Etc.

Shell

● In Linux:
○ Uses a file to simulate a disk
○ Code is provided
○ Execute ./lnxsh directly! (That is NO BOCHS! 😦😦)

● Shell supports:
○ System calls for file system
○ Commands: “ ls”, “ cat foo”, “ create foo 200”
○ All comands implemented for you EXCEPT “ls”

● You will have to write a lot of code (1,000+)

Testing

● A python script for testing is provided (test.py)
● Multiple tests that each:

○ Execute the shell
○ Open an existing file system (or format a new one)
○ Write commands to the shell (i.e. “cat foo”)
○ Read output from the shell (i.e.ABCDEF)
○ Exit

● You should also write your own test cases
● Submit them with your code

Questions?

	Slide Number 1
	Project 6 Schedule
	Design Document
	Project 6 Overview
	Project Description
	API
	Disk Layout
	Superblock: Disk Metadata
	Block Allocation Map
	Inodes: File Metadata
	Inodes: File Metadata
	System Calls
	fs_init
	fs_mkfs
	File Creation and Deletion
	File Access
	fs_lseek() Semantics
	Directories - Part 1
	Directories - Part 2
	Directories - Part 3
	fs_mkdir() Pseudo-code
	Miscellaneous
	Shell
	Testing
	Questions?

