
COS 318: Operating Systems

CPU Scheduling

Jaswinder Pal Singh
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

2

Today’s Topics

u CPU scheduling basics
u CPU scheduling algorithms

CPU Scheduler

u Selects from among the processes/threads that are
ready to execute (in ready state), and allocates the CPU
to one of them (puts in running state).

u CPU scheduling can be non-preemptive or pre-emptive
u Non-preemptive scheduling decisions may take place

when a process changes state:
1. switches from running to waiting state
2. switches from running to ready state
3. switches from waiting to ready
4. terminates

u All other scheduling is preemptive
l E.g. may be driven by an interrupt

4

Preemptive and Non-Preemptive Scheduling

Running

Blocked
Ready

Resource free,
I/O completion interrupt

(move to ready queue)

Create

Terminate
(call scheduler)

Yield, Interrupt
(call scheduler)

Block for resource
(call scheduler)

Scheduler
dispatch

Exited

Scheduling Criteria
u Assumptions made here

l One process per user and one thread per process

l Processes are independent

u Scheduling Goals
l Minmize response time (interactive) or turnaround time (batch)

• Time from submission of job/operation to its completion
• Job/operation could be keystroke in editor or running a big science simulation

l Maximize throughput (operations/jobs per second)
• Minimize overhead (e.g. context switching)
• Use system resources efficiently (CPU, memory, disk, etc)

l Fairness and proportionality
• Share CPU in some equitable way, or that meets users’ expectations
• Everyone makes some progress; no one starves

6

Some Problem Cases in Scheduling

u Scheduler completely blind about job types
l Little overlap between CPU and I/O

u Optimization involves favoring jobs of type “A” over “B”
l Lots of A’s implies B’s starve

u Interactive process gets trapped behind others
l Response time bad for no good reason.

u Priorities: A depends on B and A’s priority > B’s
l B never runs, so A doesn’t continue

Scheduling Algorithms

u Simplified view of scheduling:
l Save process state (to PCB)
l Pick which process to run next
l Dispatch process

7

First-Come-First-Serve (FCFS) Policy
u Schedule tasks in the order they arrive

l Run them until completion or they block or they yield
u Example 1

l P1 = 24 sec, P2 = 3 sec, and P3 = 3 sec, submitted ‘same’ time in that order
l Avg. response time = (24+27+30)/3 = 27. Avg. wait time (0+24+27)/3 = 17

P1 P2 P3

P2 P3 P1

u Example 2
l Same jobs but come in different order: P2, P3 and P1
l Average response time = (3 + 6 + 30) / 3 = 13 sec, avg wait time: 3 sec

u FIFO pro: Simple. Con: Short jobs get stuck behind long ones

Shortest Job First (SJF) Scheduling

u Shortest Remaining Time to Completion First (SRTCF)
u Whenever scheduling decision is to be made, schedule

process with shortest remaining time to completion
l Non-preemptive case: straightforward (if time can be estimated)
l Preemptive case: if new process arrives with smaller remaining

time, preempt running process and schedule new one
u Simple example: all arrive at same time:

l P1 = 6sec, P2 = 8sec, P3 = 7sec, P4 = 3sec

u Can you do better, in average response time?
u Issues with this approach?

P1 P2P3P4

Process Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

uSJF (non-preemptive)

uAverage waiting time = (0 + 6 + 3 + 7)/4 = 4

Example of non-preemptive SJF

P1 P3 P2

73 160

P4

8 12

Example of preemptive SJF

Process Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

uSJF (preemptive)

uAverage waiting time = (9 + 1 + 0 +2)/4 = 3

P1 P3P2

42 110

P4

5 7

P2 P1

16

Round Robin

u Similar to FCFS, but with a time slice for timer interrupt
l Time-interrupted process is moved to end of queue

u FCFS for preemptive scheduling
u Real systems also have I/O interrupts in the mix

u How do you choose time slice?

Current
process

FCFS vs. Round Robin

u Example
l 10 jobs and each takes 100 seconds

u FCFS (non-preemptive scheduling)
l job 1: 100s, job2: 200s, ... , job10: 1000s

u Round Robin (preemptive scheduling)
l time slice 1sec and no overhead
l job1: 991s, job2: 992s, ... , job10: 1000s

u Comparisons
l Round robin is much worse (avg turnaround time) for jobs

about the same length
l Both are fair, but RR is bad in the case where FIFO is optimal
l But, e.g. for streaming video, RR is good, since everyone

makes progress and gets a share “all the time”

Resource Utilization Example

u A, B, and C run forever (in this order)
l A and B each uses 100% CPU forever
l C is a CPU plus I/O job (1ms CPU + 10ms disk I/O)

u Time slice 100ms
l A (100ms CPU), B (100ms CPU), C (1ms CPU + 10ms I/O),

…

u Time slice 1ms
l A (1ms CPU), B (1ms CPU), C (1ms CPU), A (1ms CPU), B

(1ms CPU), C(10ms I/O) || A, B, …, A, B

u What do we learn from this example?

16

Virtual Round Robin

u I/O bound processes go
to auxiliary queue
(instead of ready
queue) to get
scheduled

u Aux queue is FIFO
u Aux queue has

preference over ready
queue

CPUAdmit

Timeout

Dispatch

I/O wait

I/O wait

I/O wait

Aux queue

I/O
 c

om
pl

et
io

n

17

Priority Scheduling

uNot all processes are equal, so rank them
u The method

l Assign each process a priority
l Run the process with highest priority in the ready queue first
l Adjust priority dynamically (I/O wait raises the priority, reduce

priority as process runs)
u Why adjusting priorities dynamically

l T1 at priority 4, T2 at priority 1 and T2 holds lock L
l Scenario

• T1 tries to acquire L, fails, blocks.
• T3 enters system at priority 3.
• T2 never gets to run, and T1 is never unblocked

Multi-level Feedback Queues (MFQ)

u Round-robin queues, each with different priority
u Higher priority queues have shorter time slices
u Jobs start at highest priority queue
u If timeout expires, drop one level
u If timeout doesn’t expire, stay or pushup one level
u What does this method do?

Priority
4
3
2
1

Time slices
1
2
4
8

Lottery Scheduling

u Motivations
l SJF does well with average response time, but is unfair (long

jobs can be starved)
l Need a way to give everybody some chance of running

u Lottery method
l Give each job a number of tickets
l Randomly pick a winning ticket
l To approximate SJF, give short jobs more tickets
l To avoid starvation, give each job at least one ticket
l Cooperative processes can exchange tickets

20

Multiprocessor and Cluster

Multiprocessor architecture
u Cache coherence
u Single OS

Cluster or multicomputer
u Distributed memory
u An OS in each box

…
CPU

L1 $

L2 $

CPU

L1 $

L2 $

…

Memory Network

21

Multiprocessor/Cluster Scheduling

u Design issue
l Process/thread to processor assignment

u Gang scheduling (co-scheduling)
l Threads of the same process will run together
l Processes of the same application run together

u Dedicated processor assignment
l Threads will be running on specific processors to completion
l Is this a good idea?

22

Real-Time Scheduling

u Two types of real-time
l Hard deadline

• Must meet, otherwise can cause fatal error
l Soft Deadline

• Meet most of the time, but not mandatory

u Admission control
l Take a real-time process only if the system can guarantee the

“real-time” behavior of all processes.
l Assume periodic processes. The jobs are schedulable, if the

following holds:

where Ci = computation time, and Ti = period

å Ci
Ti

£ 1

23

Rate Monotonic Scheduling (Liu & Layland 73)

u Assumptions
l Each periodic process must complete within its period
l No process is dependent on any other process
l A process needs same amount of CPU time on each burst
l Non-periodic processes have no deadlines
l Process preemption occurs instantaneously (no overhead)

u Main ideas of RMS
l Assign each process a fixed priority = frequency of occurrence
l Run the process with highest priority

u Example
l P1 runs every 30ms gets priority 33 (33 times/sec)
l P2 runs every 50ms gets priority 20 (20 times/sec)

24

Earliest Deadline Scheduling
u Assumptions

l When a process needs CPU time, it announces its deadline
l No need to be periodic process
l CPU time needed may vary

u Main idea of EDS
l Sort ready processes by their deadlines
l Run the first process on the list (earliest deadline first)
l When a new process is ready, it preempts the current one if its

deadline is closer

u Example
l P1 needs to finish by 30sec, P2 by 40sec and P3 by 50sec
l P1 goes first
l More in MOS 7.4.4

25

BSD 4.3 Multi-Queue Priority Scheduling

u “1 sec” preemption
l Preempt if a process doesn’t block or complete within 1 sec

u Priority is recomputed every second
l Pi = base + (CPUi-1) / 2 + nice, where CPUi = (Ui + CPUi-1) / 2
l Base is the base priority of the process
l Ui is process utilization in interval i

u Priorities
l Swapper
l Block I/O device control
l File operations
l Character I/O device control
l User processes

26

Linux Scheduling

u Time-sharing scheduling
l Each process has a priority and # of credits
l Process with the most credits will run next
l I/O event increases credits
l A timer interrupt causes a process to lose a credit, until zero

credits reached at which time process is interrupted
l If no process has credits, then the kernel issues credits to all

processes: credits = credits/2 + priority

u Real-time scheduling
l Soft real-time (really just higher priority threads: FIFO or RR)
l Kernel cannot be preempted by user code

27

Windows Scheduling
u Classes and priorities

l Real time: 16 static priorities
l Variable: 16 variable priorities, start at a base priority

• If a process has used up its quantum, lower its priority
• If a process waits for an I/O event, raise its priority

u Priority-driven scheduler
l For real-time class, do round robin within each priority
l For variable class, do multiple queue

u Multiprocessor scheduling
l For N processors, run N-1 highest priority threads on N-1

processors and run remaining threads on a single processor
l A thread will wait for processors in its affinity set, if there are

other threads available (for variable priorities)

28

Summary

u Best algorithms may depend on your primary goals
l FIFO simple, optimal avg response time for tasks of equal size,

but can be poor avg reponse time if tasks vary a lot in size
l SJF gives the minimal average response time, but can be not

great in variance of response times
l RR has very poor avg response time for equal size tasks, but is

close to SJF for variable size tasks
l Small time slice is important for improving I/O utilization
l If tasks have mix of processing and I/O, do well under SJF but

can do poorly under RR
l Priority and its variations are used in most systems
l Lottery scheduling is flexible
l Multi-queue can achieve a good balance
l Admission control is important in real-time scheduling

