COS 318: Operating Systems
Q0O

CPU Scheduling

Jaswinder Pal Singh

Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

Today's Topics

¢ CPU scheduling basics
¢ CPU scheduling algorithms

CPU Scheduler
o060
Selects from among the processes/threads that are
ready to execute (in ready state), and allocates the CPU
to one of them (puts in running state).

CPU scheduling can be non-preemptive or pre-emptive

Non-preemptive scheduling decisions may take place
when a process changes state:

1. switches from running to waiting state

2. switches from running to ready state

3. switches from waiting to ready

4. terminates

All other scheduling is preemptive
e E.g. may be driven by an interrupt

Preemptive and Non-Preemptive Scheduling
200

Terminate
(call scheduler)

Scheduler

dispatc
Block for resource

(call scheduler)

Yield, Interrupt
(call scheduler)

Blocked

Create

Resource free,
I/O completion interrupt
(move to ready queue)

3? 4

Scheduling Criteria

Assumptions made here
e One process per user and one thread per process

e Processes are independent

Scheduling Goals

e Minmize response time (interactive) or turnaround time (batch)
« Time from submission of job/operation to its completion
« Job/operation could be keystroke in editor or running a big science simulation

e Maximize throughput (operations/jobs per second)
« Minimize overhead (e.g. context switching)
« Use system resources efficiently (CPU, memory, disk, etc)

e Fairness and proportionality
« Share CPU in some equitable way, or that meets users’ expectations
« Everyone makes some progress; no one starves

Some Problem Cases in Scheduling

00
Scheduler completely blind about job types

e Little overlap between CPU and |/O
Optimization involves favoring jobs of type “A” over “B”
e Lots of A’'s implies B’s starve
Interactive process gets trapped behind others
e Response time bad for no good reason.
Priorities: A depends on B and A’s priority > B’s
e B never runs, so A doesn’t continue

Scheduling Algorithms

+ Simplified view of scheduling:
e Save process state (to PCB)
e Pick which process to run next
e Dispatch process

First-Come-First-Serve (FCFS) Policy

Schedule tasks in the order they arrive
e Run them until completion or they block or they yield
Example 1

e P1 =24 sec, P2 =3 sec, and P3 = 3 sec, submitted ‘same’ time in that order
e Avg. response time = (24+27+30)/3 = 27. Avg. wait time (0+24+27)/3 = 17

P1 P2 | P3

Example 2
e Same jobs but come in different order: P2, P3 and P1
e Average response time = (3 + 6 + 30)/ 3 = 13 sec, avg wait time: 3 sec

P2 | P3 P1

FIFO pro: Simple. Con: Short jobs get stuck behind long ones

Shortest Job First (SJF) Scheduling
o000
Shortest Remaining Time to Completion First (SRTCF)

Whenever scheduling decision is to be made, schedule
process with shortest remaining time to completion
e Non-preemptive case: straightforward (if time can be estimated)
e Preemptive case: if new process arrives with smaller remaining
time, preempt running process and schedule new one
Simple example: all arrive at same time:
e P1 =6sec, P2 =8sec, P3 = 7sec, P4 = 3sec

P4 P P3 .

Can you do better, in average response time?
Issues with this approach?

Example of non-preemptive SJF

Process Arrival Time Burst Time
P, 0.0 /
P, 2.0 4
P, 4.0 1
P, 5.0 4

SJF (non-preemptive)

Average waitingtime=(0+6 +3 +7)/4 =4

Example of preemptive SJF

Process Arrival Time Burst Time
P, 0.0 /
P, 2.0 4
P, 4.0 1
P, 5.0 4

SJF (preemptive)

P, | Py [Ps | P, P, P,

Average waitingtime=(9+1+0+2)/4=3

Round Robin

—»

Current
process

Similar to FCFS, but with a time slice for timer interrupt
e Time-interrupted process is moved to end of queue

FCFS for preemptive scheduling
Real systems also have 1I/O interrupts in the mix

How do you choose time slice?

FCFS vs. Round Robin

Example
e 10 jobs and each takes 100 seconds

FCFS (non-preemptive scheduling)
e job 1: 100s, job2: 200s, ..., job10: 1000s

Round Robin (preemptive scheduling)

e time slice 1sec and no overhead
e job1: 991s, job2: 992s, ..., job10: 1000s

Comparisons

e Round robin is much worse (avg turnaround time) for jobs
about the same length

e Both are fair, but RR is bad in the case where FIFO is optimal

e But, e.qg. for streaming video, RR is good, since everyone
makes progress and gets a share “all the time”

Resource Utilization Example

A, B, and C run forever (in this order)
e A and B each uses 100% CPU forever
e Cisa CPU plus I/O job (1ms CPU + 10ms disk 1/O)

Time slice 100ms
e A(100ms CPU), B (100ms CPU), C (1Tms CPU + 10ms 1/O),

Time slice 1ms

e A(1ms CPU), B (1ms CPU), C (1ms CPU), A (1ms CPU), B
(1fms CPU), C(10ms I/O) || A, B, ..., A, B

What do we learn from this example?

Virtual Round Robin

o000
¢ |I/O bo_u_nd processes go Timeout
to auxiliary queue .
(instead of ready Dispatch
gueue) to get —— CPU
scheduled Admit
¢ Aux queue is FIFO Aux queue
¢+ Aux queue has = 1O wait
preference over ready b= —-:
queue c. 1O wait
s — ol -
Q

16

Priority Scheduling

Not all processes are equal, so rank them
The method

e Assign each process a priority
e Run the process with highest priority in the ready queue first
e Adjust priority dynamically (I/O wait raises the priority, reduce
priority as process runs)
Why adjusting priorities dynamically
e T1 at priority 4, T2 at priority 1 and T2 holds lock L

e Scenario
* T1 tries to acquire L, fails, blocks.
» T3 enters system at priority 3.
* T2 never gets to run, and T1 is never unblocked

17

Multi-level Feedback Queues (MFQ)

e, %
® 'rqa

Priority Time slices
4

i
i

O I N\

3
2
1

+ Round-robin queues, each with different priority
¢+ Higher priority queues have shorter time slices

+ Jobs start at highest priority queue

+ If timeout expires, drop one level

+ If timeout doesn’t expire, stay or pushup one level
¢ What does this method do?

Lottery Scheduling
o000
Motivations

e SJF does well with average response time, but is unfair (long
jobs can be starved)

e Need a way to give everybody some chance of running

Lottery method
e Give each job a number of tickets
e Randomly pick a winning ticket
e To approximate SJF, give short jobs more tickets
e [0 avoid starvation, give each job at least one ticket
e Cooperative processes can exchange tickets

Multiprocessor and Cluster

CPU CPU

L1$ | - | L19$

L2 $ L2 $
Memory

Multiprocessor architecture Cluster or multicomputer

¢ Cache coherence ¢ Distributed memory
¢ Single OS ¢ An OS in each box

(ep ~ e

(S RVHINE

20

Multiprocessor/Cluster Scheduling

Design issue
e Process/thread to processor assignment

Gang scheduling (co-scheduling)

e Threads of the same process will run together
e Processes of the same application run together

Dedicated processor assignment
e Threads will be running on specific processors to completion
e |s this a good idea?

21

Real-Time Scheduling

Two types of real-time

e Hard deadline
 Must meet, otherwise can cause fatal error

e Soft Deadline
« Meet most of the time, but not mandatory
Admission control

e Take a real-time process only if the system can guarantee the
“real-time” behavior of all processes.

e Assume periodic processes. The jobs are schedulable, if the

following holds:
> S
T.

where C; = computation time, and T; = period
22

8 %
: s

Rate Monotonic Scheduling (Liu & Layland 73)

00
Assumptions

e Each periodic process must complete within its period

e No process is dependent on any other process

e A process needs same amount of CPU time on each burst
e Non-periodic processes have no deadlines

e Process preemption occurs instantaneously (no overhead)

Main ideas of RMS

e Assign each process a fixed priority = frequency of occurrence
e Run the process with highest priority

Example
e P1 runs every 30ms gets priority 33 (33 times/sec)
e P2 runs every 50ms gets priority 20 (20 times/sec)

23

Earliest Deadline Scheduling
o000
Assumptions
e \When a process needs CPU time, it announces its deadline
e No need to be periodic process
e CPU time needed may vary

Main idea of EDS
e Sort ready processes by their deadlines
e Run the first process on the list (earliest deadline first)

e \When a new process is ready, it preempts the current one if its
deadline is closer

Example

e P1 needs to finish by 30sec, P2 by 40sec and P3 by 50sec
e P1 goes first
e Morein MOS 7.4.4

24

BSD 4.3 Multi-Queue Priority Scheduling

00
“1 sec” preemption

e Preempt if a process doesn’t block or complete within 1 sec

Priority is recomputed every second

e P, =Dbase + (CPU,4) /2 + nice, where CPU,= (U, + CPU.,) / 2
e Base is the base priority of the process

e U, is process utilization in interval |

Priorities

Swapper

Block 1/O device control

File operations

Character |/O device control

User processes

25

Linux Scheduling

Time-sharing scheduling
e Each process has a priority and # of credits
e Process with the most credits will run next
e |/O event increases credits

e A timer interrupt causes a process to lose a credit, until zero
credits reached at which time process is interrupted

e If no process has credits, then the kernel issues credits to all
processes: credits = credits/2 + priority

Real-time scheduling
e Soft real-time (really just higher priority threads: FIFO or RR)
e Kernel cannot be preempted by user code

26

Windows Scheduling

Classes and priorities
e Real time: 16 static priorities
e Variable: 16 variable priorities, start at a base priority
* |f a process has used up its quantum, lower its priority
* |f a process waits for an |/O event, raise its priority
Priority-driven scheduler
e For real-time class, do round robin within each priority
e For variable class, do multiple queue

Multiprocessor scheduling

e For N processors, run N-1 highest priority threads on N-1
processors and run remaining threads on a single processor

e A thread will wait for processors in its affinity set, if there are
other threads available (for variable priorities)

27

Summary
00
Best algorithms may depend on your primary goals

e FIFO simple, optimal avg response time for tasks of equal size,
but can be poor avg reponse time if tasks vary a lot in size

e SJF gives the minimal average response time, but can be not
great in variance of response times

e RR has very poor avg response time for equal size tasks, but is
close to SJF for variable size tasks

e Small time slice is important for improving 1/O utilization

If tasks have mix of processing and I/O, do well under SJF but
can do poorly under RR

Priority and its variations are used in most systems
Lottery scheduling is flexible

Multi-queue can achieve a good balance

Admission control is important in real-time scheduling

28

8 %
: s

