COS 318: Operating Systems
Q0O

Processes and Threads

Next Few Lectures

Processing: Concurrency and Sharing
e Concurrency, Processes, Threads
e Synchronization

e CPU scheduling

e Deadlock

Today’ s Topics

¢+ Concurrency
¢ Processes
¢ Threads

Concurrency, Processes and Threads
o000

Concurrency
e Many things going on in an operating system
« Application process execution, interrupts, background tasks, maintenance
e CPU is shared, as are I/O devices
e Human beings are not good at keep track and programming monolithically
e Processes (and threads) are abstractions to bridge this gap

Concurrency via Processes
e Decompose complex problems into simple ones
e Make each simple one a process
e Processes run ‘concurrently’ but each process feels like it has its own CPU

Q: What programs, and what processes are launched when you
type “gcc —pipe —v”

Process

¢ An instance of a program in execution
e Program code, execution context, one or more threads

il P el S

main () S main ()
{ L Address
e o o E E o o o Space
foo () .1 foo()
‘e R Resources
} | L (file ptrs,
. - etc)
. bar () .1 bar()
L i { Registers
T PC
} |)
Program Process

S e e e e e e = e e = = S e e e e e e e = e e e = =

S 33 $3 S

Process vs. Program

Process > program
e Program is just the code; just part of process state

Process < program

e A program can invoke more than one process

e Example: Fork off processes

e Many processes can be running the same program

Simplest Process

Sequential execution

e One thread per process

e No concurrency inside a process

e Everything happens sequentially

e Some coordination may be required

Process state
e Registers

e Main memory
e |/O devices

* File system
« Communication ports

Threads
00
A process has an address space and resources
Thread: a locus of execution

e A sequential execution stream within a process (sometimes
called lightweight process)

e Separately schedulable: OS/runtime can run/suspend
e A process can have one or more threads
e Threads in a process share the same address space

535 e 33 3

Can have concurrency across processes, and/or across
threads within a process

e \We will initially assume one thread per process

8 %
: (a5
oo

Process Concurrency

¢ CPU Interleaving
e Processes interleaved on CPU

+ 1/O concurrency

e P1 doing I/O overlapped with
P2 running on CPU

e Each may run almost as fast as
if it has its own computer

e Reduce total completion time

¢ CPU parallelism
e Multiple CPUs (such as SMP)
e Processes running in parallel
e Speedup

P1:
P2:

P1:

P2:

P1:

P2:

L
CPU CPU

CPU

CPU 110 CPU
* . > o .

3s 2S 3s
CcCPU 1/0

6 4

3s 2S

CPU1
3s
CPU2
3s

Parallelism

Parallelism is common in real life
e A single salesperson sells $1M annually
e Hire 100 salespeople to generate $100M revenue

Speedup
e Linear speedup is factor of N for N parallel entities
Q:
e By what factor can you speed up completing your assignment
by working with a partner or two?
e By what factor when working with 20 partners?

e Can you get super-linear (more than a factor of N) speedup?
Can a program (by using N processors)?

10

Concurrency in Computing

Parallel programs
e To0 achieve better performance

Servers (expressing logically concurrent tasks)
e Multiple connections handled simultaneously

Programs with user interfaces
e To achieve user responsiveness while doing computation

Network and disk bound programs
e To hide network/disk latency

The Processing lllusion

¢ Every process thinks it owns the CPU

e Yet on a uniprocessor all processes
share the same physical CPU
e How does this work?
C

e Processes are interleaved on the CPU

* (and further, their threads are, but for now
we assume one thread per process)

PU

¢ Four key pieces:
e Timer interrupt

e PCB --- process control block, one per
process, holds execution state

e Dispatch loop
e Scheduling algorithm

The Abstraction
200

Every process (thread) runs on a dedicated virtual
processor, with unpredictable/variable speed

e Programs must work with any schedule

Programmer Abstraction Physical Reality

Running Ready
Threads Threads

Programmer vs. Processor View

00
Programmer’s Possible Possible Possible
View Execution Execution Execution
#1 #2 #3
X =X + 1; X =X + 1; X =X + 1; X =X + 1;
y =y + X; y =y + X, . y =y + X;
z =X *+ 9y; z = X + 9y, Thread is suspended. «vvvvrnrninn...
Other thread(s) run. Thread is suspended.
Thread is resumed. Other thread(s) run.
............... Thread is resumed.
Yy =y + X,

Possible executions

O 00
One Execution (1 core) Another Execution (3 cores)
Thread 1 Thread 1
Thread 2 Thread 2
Thread 3 Thread 3

Another Execution (1 core)

Q: Why might a running thread
Thread 1 be de-scheduled from the CPU?

Thread 2 i :|

Thread 3] [

Context Switching Processes
o000

¢ Scheduler Dispatch Loop

while(1){
interrupt
save state
get next process
CPU

load state, jump to it}

¢ But processes have state, some of which resides in
resources that the new running process may use

Process State

Process management info

e |dentification

e State

Ready: ready to run.
Running: currently running.
Blocked: waiting for resources

e Registers, EFLAGS, EIP, and other CPU state
e Stack, code and data segment
e Parents, etc

Memory management info
e Segments, page table, stats, etc

I/O and file management
e Communication ports, directories, file descriptors, etc.

Resource allocation and accounting information

19

Managing Execution: Process Control Block

PCB holds state and resource information associated with a process

Process management
Registers

Program counter
Program status word
Stack pointer

Process state

Priority

Scheduling parameters
Process ID

Parent process
Process group

Signals

Time when process started
CPU time used
Children’s CPU time
Time of next alarm

Memory management
Pointer to text segment
Pointer to data segment
Pointer to stack segment

File management
Root directory
Working directory
File descriptors
User ID

Group ID

& %
PR

Possible fields of a PCB

API for Process Management

Creation and termination

e Exec, Fork, Walit, Kill

Operations

e Block, Yield

Signals

e Default action, Handler, Ways to send

Synchronization
e \We will talk about this a lot more later

21

Create a Process

Creation
e Load code and data into memory
e Create an empty call stack
e |nitialize state
e Make the process ready to run

Cloning a process
e Save state of current process
e Make copy of current code, data, stack and OS state
e Make the process ready to run

22

Unix Example

¢ Methods to create and run processes:

e fork clones a process
e exec overlays the current process

pid = fork() ;

if (pid == 0) /* child process */
exec(“foo”); /* does not return */

else /* parent */
wait (pid) ; /* wait for child to die */

23

Fork and Exec in Unix

foo:

—

Pl
if

el

d = fork()

pid = fork() ;
if (pid == 0)
exec (“foo”) ;
else
walt (pid) ;

Main ()

(p1d == 0)
exec (“foo’) ;
se

walt (pid) ;

~—

pid = fork() ;
if (pid == 0)
exec ("foo) ;
else
wait (pid) ;

— ~ Wait

24

More on Fork

Create and initialize PCB
Create an address space

Copy the content of the
parent address space to
the new address space

Child inherits the New <: F(’jzrent
execution context of the address address
space space

parent (e.g. open files)

Inform scheduler that new
process is ready

pcB| {——— |pPCB

25

Process Context Switch
o000
Save a context (everything that a process may damage)
e All registers (general purpose and floating point)
e All co-processor state

e Save all memory to disk?
e \What about cache and TLB?

Start a context
e Does the reverse

Challenge
e OS code must save state without changing any state

e E.g. how should OS run without touching any registers?

« CISC machines have a special instruction to save and restore all
registers on stack

* RISC: reserve registers for kernel or have way to carefully save
one and then continue

27

Process State Transition

Non-preemptive case: e.g. no timer interrupts

Terminate

-5
)
C‘o .
(¢
Create Blocked
Running: executing now Resource becomes
Ready: waiting for CPU available

Blocked: waiting for 1/O or lock

%‘i 28
(Gerp et

(S RVHINE

Threads

Thread

e A sequential execution stream within a process (also called
lightweight process)

e Separately schedulable: OS or runtime can run or suspend at
any time

e A process may have one or more threads (loci of execution)

e [hreads in a process share the same address space

e Process is more about code and resources; thread about
Instruction execution paths — every process has at least one

Why do we need multiple threads per process?

29

Thread Concurrency

o060
¢+ Easier to program overlapping /O and CPU with threads

than with signals

¢ A server (e.g. file server) serves requests with differen
threads

¢ Multiple CPUs sharing the same memory

Four score and seven | [nation, o any nation| [Tives that this nation| [who struggled here] [hete to the unfinished | [they gave the last full
years ago, our fathers |[so conceived and so|| might live. 1t is| [have consecuted it, far| | work which they who | [measure of devotion,
biought forth upon this || dedicated, can long || altogether fitting and| | above our poor power| | fovght here have thes | [that we here highly
continent a new nation: || endure. We ae met on || proper that we should | | to add or detract. The | | far so nobly advanced. | |resolve that these dead

conceived in liberty, [|a great battiefield of [do this. world will little note,| [1 is mather for s to be | [shall not have died in
and dedicated to. the || that war. But, ina largersemse, || nor long temember, || here dedicated to the ||vain that this nation,
proposition that all || We have come to || wecamnot dedicate, we || what we say here, bot| [great task remaining | [onder God, shall have
men are created equal. |[dedicate a portion of || camnot consecrate we|[it can never forget| |before s, that from [[a new bitth of fieedom

Now we are engaged || that field as a final|| cannot hallow this | [whatthey cid here these honored dead we | |and that government of
in a great civil war || resting place for those || gound. The buve|| Ltis for s the living, | |take increased devotion | [the people by the
testing whether that | who here gave their || men, living and dead, || mther, to be dedicated | | to that cawse for which || people, for the peaple

L J
~

A word processor with
three threads

Kernel
Keyboard Disk

30

Typical Thread API

Creation

e Fork, Join

Mutual exclusion

e Acquire (lock), Release (unlock)
Condition variables

e Wait, Signal, Broadcast

Alert
e Alert, AlertWait, TestAlert

31

Threads (cont'd)

Thread 2

\
Thread 1 Thread 3

5
T8 88

Kernel

/ Process

Thread 3's stack

Every thread has its own stack

Thread Data Structures

Shared
State

Code

Thread 1’s
Per-Thread State

Global
Variables

Thread Control
Block (TCB)

Stack
Information

Saved
Registers

Thread
Metadata

Thread 2’s
Per-Thread State

Thread Control
Block (TCB)

Stack
Information

Saved
Registers

Thread
Metadata

Heap

Thread Control Block (TCB)

e Current execution state that thread is in
 Ready: ready to run
* Running: currently running
 Blocked: waiting for resources

e Regqisters

e Status (EFLAGS)

e Program counter (EIP)
e Stack information

e Code information

34

Thread and Process State

00
Per process items Per thread items
Address space Program counter
Global variables Registers
Open files Stack
Child processes State

Pending alarms
Signals and signal handlers
Accounting information

¢ Per process: Items shared by all threads in a process
¢ Per thread: ltems private to each thread

Thread Context Switch

00
Save a context (everything that a thread may damage)

e All registers (general purpose and floating point)

e All co-processor state

e Q: Need to save the stack on a thread context switch?
e Q: What about cache and TLB contents?

Start a context
e Does the reverse

May trigger a process context switch

37

Threads and Processes

Process 1 Process 1 Process 1 Process
\\ | | i
User)
space
Thread Thread
Kernel
space Kernel Kernel
(a) (b)

(a) Three processes each with one thread
(b) One process with three threads

¢ Process = thread + address space + OS env (open files etc.)
¢ Thread provides concurrency; process provides protection

Process vs Thread Execution Model

o000
Address space

e Processes do not usually share memory (address space)

e Process context switch switches page table and other memory
mechanisms

e Threads in a process share the entire address space
Privileges
e Processes have their own privileges (e.g. file access)
e Threads in a process share all privileges
Threads are about concurrency, across or within

processes; processes are about protection and
resource sharing

41

Real Operating Systems

One or many address spaces
One or many threads per address space

1 address space | Many address spaces

1 thread per MSDOS s .
_ Traditional Unix
address space Macintosh
VMS, Mach (0S-X), 0S/2,
Many threads per | Embedded OS, | \yi,qows NT/XPVistar?,
address space Pilot Solaris, HP-UX, Linux

42

Summary

Concurrency
e CPU and /O
e Among applications
e \Within an application
Processes
e Abstraction for concurrency across or within applications
e Include protection as a key aspect

Threads

e Abstraction for concurrency within an application
e Just about concurrency

43

