
COS 318: Operating Systems

Processes and Threads

Next Few Lectures

u Processing: Concurrency and Sharing
l Concurrency, Processes, Threads
l Synchronization
l CPU scheduling
l Deadlock

2

3

Today’s Topics

u Concurrency
u Processes
u Threads

4

Concurrency, Processes and Threads
u Concurrency

l Many things going on in an operating system
• Application process execution, interrupts, background tasks, maintenance

l CPU is shared, as are I/O devices
l Human beings are not good at keep track and programming monolithically
l Processes (and threads) are abstractions to bridge this gap

u Concurrency via Processes
l Decompose complex problems into simple ones
l Make each simple one a process
l Processes run ‘concurrently’ but each process feels like it has its own CPU

u Q: What programs, and what processes are launched when you
type “gcc –pipe –v”

5

Process

main()
{
...
foo()
...
}

bar()
{

...
}

Program

main()
{
...
foo()
...
}

bar()
{

...
}

Process

Address
space

Resources
(file ptrs,

etc)

Registers
PC

u An instance of a program in execution
l Program code, execution context, one or more threads

Threads
of execution

6

Process vs. Program

u Process > program
l Program is just the code; just part of process state

u Process < program
l A program can invoke more than one process
l Example: Fork off processes
l Many processes can be running the same program

7

Simplest Process

u Sequential execution
l One thread per process
l No concurrency inside a process
l Everything happens sequentially
l Some coordination may be required

u Process state
l Registers
l Main memory
l I/O devices

• File system
• Communication ports

l …

8

Threads

u A process has an address space and resources
u Thread: a locus of execution

l A sequential execution stream within a process (sometimes
called lightweight process)

l Separately schedulable: OS/runtime can run/suspend
l A process can have one or more threads
l Threads in a process share the same address space

u Can have concurrency across processes, and/or across
threads within a process
l We will initially assume one thread per process

Process

9

Process Concurrency
u CPU Interleaving

l Processes interleaved on CPU

CPU CPUI/O

CPU I/O
3s 2s 3s

3s 2s

P1:

P2:

CPU1
3s

CPU2
3s

P1:

P2:

P1:
CPUP2:

CPU CPU

u I/O concurrency
l P1 doing I/O overlapped with

P2 running on CPU
l Each may run almost as fast as

if it has its own computer
l Reduce total completion time

u CPU parallelism
l Multiple CPUs (such as SMP)
l Processes running in parallel
l Speedup

10

Parallelism

u Parallelism is common in real life
l A single salesperson sells $1M annually
l Hire 100 salespeople to generate $100M revenue

u Speedup
l Linear speedup is factor of N for N parallel entities

u Q:
l By what factor can you speed up completing your assignment

by working with a partner or two?
l By what factor when working with 20 partners?
l Can you get super-linear (more than a factor of N) speedup?

Can a program (by using N processors)?

Concurrency in Computing

u Parallel programs
l To achieve better performance

u Servers (expressing logically concurrent tasks)
l Multiple connections handled simultaneously

u Programs with user interfaces
l To achieve user responsiveness while doing computation

u Network and disk bound programs
l To hide network/disk latency

The Processing Illusion

u Every process thinks it owns the CPU
l Yet on a uniprocessor all processes

share the same physical CPU
l How does this work?
l Processes are interleaved on the CPU

• (and further, their threads are, but for now
we assume one thread per process)

u Four key pieces:
l Timer interrupt
l PCB --- process control block, one per

process, holds execution state
l Dispatch loop
l Scheduling algorithm

CPU

The Abstraction

u Every process (thread) runs on a dedicated virtual
processor, with unpredictable/variable speed
l Programs must work with any schedule

Programmer Abstraction Physical Reality

Threads

Processors 1 2 3 4 5 1 2

Running
Threads

Ready
Threads

Programmer vs. Processor View

Programmer·s
View

.

.

.
x = x + 1 ;
y = y + x ;
z = x + 5 y ;

.

.

.

Possible
Execution

#1
.
.
.

x = x + 1 ;
y = y + x ;
z = x + 5 y ;

.

.

.

Possible
Execution

#2
.
.
.

x = x + 1 ;
.

Thread is suspended.
Other thread(s) run.
Thread is resumed.
.
y = y + x ;
z = x + 5 y ;

Possible
Execution

#3
.
.
.

x = x + 1 ;
y = y + x ;

.
Thread is suspended.
Other thread(s) run.
Thread is resumed.
.

z = x + 5 y ;

Possible executions

Thread 1

Thread 2

Thread 3

One Execution Another Execution

Thread 1

Thread 2

Thread 3

Another Execution

Thread 1

Thread 2

Thread 3

(3 cores)(1 core)

(1 core)

Q: Why might a running thread
be de-scheduled from the CPU?

Context Switching Processes

CPU

while(1){
interrupt
save state
get next process
load state, jump to it}

u Scheduler Dispatch Loop

u But processes have state, some of which resides in
resources that the new running process may use

19

Process State
u Process management info

l Identification
l State

Ready: ready to run.
Running: currently running.
Blocked: waiting for resources

l Registers, EFLAGS, EIP, and other CPU state
l Stack, code and data segment
l Parents, etc

u Memory management info
l Segments, page table, stats, etc

u I/O and file management
l Communication ports, directories, file descriptors, etc.

u Resource allocation and accounting information

Managing Execution: Process Control Block

Possible fields of a PCB

PCB holds state and resource information associated with a process

21

API for Process Management

u Creation and termination
l Exec, Fork, Wait, Kill

u Operations
l Block, Yield

u Signals
l Default action, Handler, Ways to send

u Synchronization
l We will talk about this a lot more later

22

Create a Process

u Creation
l Load code and data into memory
l Create an empty call stack
l Initialize state
l Make the process ready to run

u Cloning a process
l Save state of current process
l Make copy of current code, data, stack and OS state
l Make the process ready to run

23

Unix Example

u Methods to create and run processes:
l fork clones a process
l exec overlays the current process

pid = fork();
if (pid == 0) /* child process */

exec(“foo”); /* does not return */
else /* parent */

wait(pid); /* wait for child to die */

Fork and Exec in Unix

24

pid = fork();
if (pid == 0)

exec(“foo”);
else

wait(pid);

pid = fork();
if (pid == 0)

exec(“foo”);
else

wait(pid);

Main()
{
…
}

foo:

pid = fork();
if (pid == 0)

exec(“foo”);
else

wait(pid);

Wait

More on Fork
u Create and initialize PCB
u Create an address space
u Copy the content of the

parent address space to
the new address space

u Child inherits the
execution context of the
parent (e.g. open files)

u Inform scheduler that new
process is ready

25

PCB

Parent
address
space

PCB

New
address
space

New
address
space

PCB

27

Process Context Switch
u Save a context (everything that a process may damage)

l All registers (general purpose and floating point)
l All co-processor state
l Save all memory to disk?
l What about cache and TLB?

u Start a context
l Does the reverse

u Challenge
l OS code must save state without changing any state
l E.g. how should OS run without touching any registers?

• CISC machines have a special instruction to save and restore all
registers on stack

• RISC: reserve registers for kernel or have way to carefully save
one and then continue

28

Process State Transition

Running

BlockedReady

Sc
he

du
ler

dis

pa
tch

W
ait for

resource

Resource becomes
available

Create

Terminate

Running: executing now
Ready: waiting for CPU
Blocked: waiting for I/O or lock

Non-preemptive case: e.g. no timer interrupts

29

Threads

u Thread
l A sequential execution stream within a process (also called

lightweight process)
l Separately schedulable: OS or runtime can run or suspend at

any time
l A process may have one or more threads (loci of execution)
l Threads in a process share the same address space
l Process is more about code and resources; thread about

instruction execution paths – every process has at least one
u Why do we need multiple threads per process?

30

Thread Concurrency

u Easier to program overlapping I/O and CPU with threads
than with signals

u A server (e.g. file server) serves requests with different
threads

u Multiple CPUs sharing the same memory

A word processor with
three threads

31

Typical Thread API

u Creation
l Fork, Join

u Mutual exclusion
l Acquire (lock), Release (unlock)

u Condition variables
l Wait, Signal, Broadcast

u Alert
l Alert, AlertWait, TestAlert

Threads (cont’d)

Every thread has its own stack

Thread Data Structures

Thread 1·s
Perï7hread State

Stack

Thread �·s
Perï7hread State

Shared
State

Thread
Metadata

Saved
Registers

Stack
Information

Thread Control
Block (TCB)

Stack

Thread
Metadata

Saved
Registers

Stack
Information

Thread Control
Block (TCB)

Global
Variables

Heap

Code

34

Thread Control Block (TCB)

l Current execution state that thread is in
• Ready: ready to run
• Running: currently running
• Blocked: waiting for resources

l Registers
l Status (EFLAGS)
l Program counter (EIP)
l Stack information
l Code information

Thread and Process State

u Per process: Items shared by all threads in a process
u Per thread: Items private to each thread

37

Thread Context Switch

u Save a context (everything that a thread may damage)
l All registers (general purpose and floating point)
l All co-processor state
l Q; Need to save the stack on a thread context switch?
l Q: What about cache and TLB contents?

u Start a context
l Does the reverse

u May trigger a process context switch

Threads and Processes

(a) Three processes each with one thread
(b) One process with three threads

u Process = thread + address space + OS env (open files etc.)
u Thread provides concurrency; process provides protection

41

Process vs Thread Execution Model

u Address space
l Processes do not usually share memory (address space)
l Process context switch switches page table and other memory

mechanisms
l Threads in a process share the entire address space

u Privileges
l Processes have their own privileges (e.g. file access)
l Threads in a process share all privileges

u Threads are about concurrency, across or within
processes; processes are about protection and
resource sharing

42

Real Operating Systems

u One or many address spaces
u One or many threads per address space

1 address space Many address spaces

1 thread per
address space

MSDOS
Macintosh

Traditional Unix

Many threads per
address space

Embedded OS,
Pilot

VMS, Mach (OS-X), OS/2,
Windows NT/XP/Vista/7,
Solaris, HP-UX, Linux

43

Summary

u Concurrency
l CPU and I/O
l Among applications
l Within an application

u Processes
l Abstraction for concurrency across or within applications
l Include protection as a key aspect

u Threads
l Abstraction for concurrency within an application
l Just about concurrency

