
COS 318: Operating Systems

Processes and Threads



Next Few Lectures

u Processing: Concurrency and Sharing
l Concurrency, Processes, Threads
l Synchronization
l CPU scheduling
l Deadlock

2



3

Today’s Topics

u Concurrency
u Processes
u Threads
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Concurrency, Processes and Threads
u Concurrency

l Many things going on in an operating system
• Application process execution, interrupts, background tasks, maintenance

l CPU is shared, as are I/O devices
l Human beings are not good at keep track and programming monolithically
l Processes (and threads) are abstractions to bridge this gap

u Concurrency via Processes
l Decompose complex problems into simple ones
l Make each simple one a process
l Processes run ‘concurrently’ but each process feels like it has its own CPU

u Q: What programs, and what processes are launched when you 
type “gcc –pipe –v”
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Process

main()
{
...
foo()
...
}

bar()
{

...
}

Program

main()
{
...
foo()
...
}

bar()
{

...
}

Process

Address
space

Resources
(file ptrs,

etc)

Registers
PC

u An instance of a program in execution
l Program code, execution context, one or more threads

Threads
of execution
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Process vs. Program

u Process > program
l Program is just the code; just part of process state

u Process < program
l A program can invoke more than one process
l Example: Fork off processes
l Many processes can be running the same program
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Simplest Process

u Sequential execution
l One thread per process
l No concurrency inside a process
l Everything happens sequentially
l Some coordination may be required

u Process state
l Registers
l Main memory
l I/O devices

• File system
• Communication ports

l …
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Threads

u A process has an address space and resources
u Thread: a locus of execution

l A sequential execution stream within a process (sometimes 
called lightweight process)

l Separately schedulable: OS/runtime can run/suspend 
l A process can have one or more threads
l Threads in a process share the same address space

u Can have concurrency across processes, and/or across 
threads within a process
l We will initially assume one thread per process

Process
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Process Concurrency
u CPU Interleaving

l Processes interleaved on CPU

CPU CPUI/O

CPU I/O
3s 2s 3s

3s 2s

P1:

P2:

CPU1
3s

CPU2
3s

P1:

P2:

P1:
CPUP2:

CPU CPU

u I/O concurrency
l P1 doing I/O overlapped with 

P2 running on CPU
l Each may run almost as fast as 

if it has its own computer
l Reduce total completion time

u CPU parallelism
l Multiple CPUs (such as SMP)
l Processes running in parallel
l Speedup
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Parallelism

u Parallelism is common in real life
l A single salesperson sells $1M annually
l Hire 100 salespeople to generate $100M revenue

u Speedup
l Linear speedup is factor of N for N parallel entities

u Q:
l By what factor can you speed up completing your assignment 

by working with a partner or two?
l By what factor when working with 20 partners?
l Can you get super-linear (more than a factor of N) speedup?  

Can a program (by using N processors)?



Concurrency in Computing

u Parallel programs
l To achieve better performance

u Servers (expressing logically concurrent tasks)
l Multiple connections handled simultaneously

u Programs with user interfaces
l To achieve user responsiveness while doing computation

u Network and disk bound programs
l To hide network/disk latency



The Processing Illusion

u Every process thinks it owns the CPU
l Yet on a uniprocessor all processes 

share the same physical CPU
l How does this work?
l Processes are interleaved on the CPU

• (and further, their threads are, but for now 
we assume one thread per process)

u Four key pieces:
l Timer interrupt
l PCB --- process control block, one per 

process, holds execution state
l Dispatch loop
l Scheduling algorithm

CPU



The Abstraction

u Every process (thread) runs on a dedicated virtual 
processor, with unpredictable/variable speed
l Programs must work with any schedule

Programmer Abstraction Physical Reality

Threads

Processors 1 2 3 4 5 1 2

Running
Threads

Ready 
Threads



Programmer vs. Processor View

Programmer·s 
View

.

.

.
x  =  x  +  1 ;
y  =  y  +  x ;
z  =  x  +  5 y ;

.

.

.

Possible 
Execution

#1
.
.
.

x  =  x  +  1 ;
y  =  y  +  x ;
z  =  x  +  5 y ;

.

.

.

Possible 
Execution

#2
.
.
.

x  =  x  +  1 ;
. . . . . . . . . . . . . .

Thread is suspended.
Other thread(s) run.
Thread is resumed.
. . . . . . . . . . . . . . .
y  =  y  +  x ;
z  =  x  +  5 y ;

Possible 
Execution

#3
.
.
.

x  =  x  +  1 ;
y  =  y  +  x ;

. . . . . . . . . . . . . . .
Thread is suspended.
Other thread(s) run.
Thread is resumed.
. . . . . . . . . . . . . . . .

z  =  x  +  5 y ;



Possible executions

Thread 1

Thread 2

Thread 3

One Execution Another Execution

Thread 1

Thread 2

Thread 3

Another Execution

Thread 1

Thread 2

Thread 3

(3 cores)(1 core)

(1 core)

Q: Why might a running thread 
be de-scheduled from the CPU?



Context Switching Processes

CPU

while(1){
interrupt
save state
get next process
load state, jump to it}

u Scheduler Dispatch Loop

u But processes have state, some of which resides in 
resources that the new running process may use
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Process State
u Process management info

l Identification
l State

Ready: ready to run.
Running: currently running.
Blocked: waiting for resources

l Registers, EFLAGS, EIP, and other CPU state
l Stack, code and data segment
l Parents, etc

u Memory management info
l Segments, page table, stats, etc

u I/O and file management
l Communication ports, directories, file descriptors, etc.

u Resource allocation and accounting information



Managing Execution: Process Control Block 

Possible fields of a PCB

PCB holds state and resource information associated with a process 
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API for Process Management

u Creation and termination
l Exec, Fork, Wait, Kill

u Operations
l Block, Yield

u Signals
l Default action, Handler, Ways to send

u Synchronization
l We will talk about this a lot more later
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Create a Process

u Creation
l Load code and data into memory
l Create an empty call stack
l Initialize state
l Make the process ready to run

u Cloning a process
l Save state of current process
l Make copy of current code, data, stack and OS state
l Make the process ready to run
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Unix Example

u Methods to create and run processes:
l fork clones a process
l exec overlays the current process

pid = fork();
if (pid == 0)   /* child process */

exec(“foo”);  /* does not return */
else /* parent */ 

wait(pid);    /* wait for child to die */



Fork and Exec in Unix
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pid = fork();
if (pid == 0)  

exec(“foo”); 
else

wait(pid);    

pid = fork();
if (pid == 0)  

exec(“foo”); 
else

wait(pid);    

Main()
{
…
}

foo:

pid = fork();
if (pid == 0)  

exec(“foo”); 
else

wait(pid);    

Wait



More on Fork
u Create and initialize PCB
u Create an address space
u Copy the content of the 

parent address space to 
the new address space

u Child inherits the 
execution context of the 
parent (e.g. open files)

u Inform scheduler that new 
process is ready

25

PCB

Parent
address
space

PCB

New
address
space

New
address
space

PCB
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Process Context Switch 
u Save a context (everything that a process may damage)

l All registers (general purpose and floating point)
l All co-processor state
l Save all memory to disk?
l What about cache and TLB?

u Start a context
l Does the reverse

u Challenge
l OS code must save state without changing any state
l E.g. how should OS run without touching any registers?

• CISC machines have a special instruction to save and restore all 
registers on stack

• RISC: reserve registers for kernel or have way to carefully save 
one and then continue 
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Process State Transition

Running

BlockedReady

Sc
he

du
ler

 
dis

pa
tch

W
ait for

resource

Resource becomes
available

Create

Terminate

Running: executing now
Ready: waiting for CPU
Blocked: waiting for  I/O or lock

Non-preemptive case: e.g. no timer interrupts
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Threads

u Thread
l A sequential execution stream within a process (also called 

lightweight process)
l Separately schedulable: OS or runtime can run or suspend at 

any time
l A process may have one or more threads (loci of execution)
l Threads in a process share the same address space
l Process is more about code and resources; thread about 

instruction execution paths – every process has at least one
u Why do we need multiple threads per process?
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Thread Concurrency

u Easier to program overlapping I/O and CPU with threads 
than with signals

u A server (e.g. file server) serves requests with different 
threads

u Multiple CPUs sharing the same memory

A word processor with 
three threads
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Typical Thread API

u Creation
l Fork, Join

u Mutual exclusion
l Acquire (lock), Release (unlock)

u Condition variables
l Wait, Signal, Broadcast

u Alert
l Alert, AlertWait, TestAlert



Threads (cont’d)

Every thread has its own stack



Thread Data Structures

Thread 1·s
Perï7hread State

Stack

Thread �·s
Perï7hread State

Shared
State 

Thread
Metadata

Saved
Registers

Stack
Information

Thread Control
Block (TCB)

Stack

Thread
Metadata

Saved
Registers

Stack
Information

Thread Control
Block (TCB)

Global
Variables

Heap

Code
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Thread Control Block (TCB)

l Current execution state that thread is in
• Ready: ready to run
• Running: currently running
• Blocked: waiting for resources

l Registers
l Status (EFLAGS)
l Program counter (EIP)
l Stack information
l Code information



Thread and Process State

u Per process: Items shared by all threads in a process
u Per thread: Items private to each thread
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Thread Context Switch 

u Save a context (everything that a thread may damage)
l All registers (general purpose and floating point)
l All co-processor state
l Q; Need to save the stack on a thread context switch?
l Q: What about cache and TLB contents?

u Start a context
l Does the reverse

u May trigger a process context switch



Threads and Processes

(a) Three processes each with one thread
(b) One process with three threads

u Process = thread + address space + OS env (open files etc.)
u Thread provides concurrency; process provides protection
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Process vs Thread Execution Model

u Address space
l Processes do not usually share memory (address space)
l Process context switch switches page table and other memory 

mechanisms
l Threads in a process share the entire address space 

u Privileges
l Processes have their own privileges (e.g. file access)
l Threads in a process share all privileges

u Threads are about concurrency, across or within 
processes; processes are about protection and 
resource sharing
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Real Operating Systems

u One or many address spaces
u One or many threads per address space

1 address space Many address spaces

1 thread per 
address space

MSDOS
Macintosh

Traditional Unix

Many threads per 
address space

Embedded OS,
Pilot

VMS, Mach (OS-X), OS/2, 
Windows NT/XP/Vista/7,
Solaris, HP-UX, Linux
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Summary

u Concurrency
l CPU and I/O
l Among applications
l Within an application

u Processes
l Abstraction for concurrency across or within applications
l Include protection as a key aspect

u Threads
l Abstraction for concurrency within an application
l Just about concurrency


