COS 318: Operating Systems
@00

Review Session 2

Outline

¢ Practice six more sample questions

Sample Question 9
00

Attribution: from U Waterloo CS 350 Study Questions

A virtual memory system uses both paging and segmentation. Process virtual addresses consist of a total of
32 bits. The page size is 1024 (21°) bytes. A page table may occupy at most one frame, and the size of a page
table entry is 4 bytes. A single process may have up to 64 (2°) segments.

a. How many levels of page tables are required for virtual address translation in this system?
b. What is the maximum size of a virtual memory segment?

c. Draw an address translation diagram that shows how a virtual address is translated in this system. Your
diagram must show each component of the virtual and physical addresses, and the size of each componet.
It must show any tables used in translation, and their lengths. It must show how the components of
the virtual address are used to index the tables, and how the components of the physical address are
determined.

Paging + segmentation

Virtual address space: 32-bit

Page size: 1KB (2710 bytes)

PT max 1 frame

PTE: 4 bytes (2"2)

Segments per process: Up to 64 (2/6) ;

® 6 6 ¢ o o

)‘
-] [~
i 5

Sample Question 9.A
00

Attribution: from U Waterloo CS 350 Study Questions

a. How many levels of page tables are required for virtual address translation in this system? |

Paging + segmentation
Virtual address space: 32-bit
Page size: 1KB (2710 bytes)

Virtual Address: 32bits

Segment:\ _/ Offset in page: PT max 1 frame
6 bits 10 bits PTE: 4 bytes (2/2)
16 bits Segments per process: Up to 64 (2/6)

(2716 pages per segment)

Each page table fits
2710 = 272 =218
page table entries.

A two-level page
table is needed.

Sample Question 9.B
00

Attribution: from U Waterloo CS 350 Study Questions

| b. What is the maximum size of a virtual memory segment? |

Paging + segmentation
Virtual address space: 32-bit
Page size: 1KB (2710 bytes)

Segment:\ / PT max 1 frame

6 bits Y PTE: 4 bytes (272)
26 bits > 2726 bytes Segments per process: Up to 64 (26)

Virtual Address: 32bits

Sample Question 9.C
00

Attribution: from U Waterloo CS 350 Study Questions

c. Draw an address translation diagram that shows how a virtual address is translated in this system. Your
diagram must show each component of the virtual and physical addresses, and the size of each componet.
It must show any tables used in translation, and their lengths. It must show how the components of
the virtual address are used to index the tables, and how the components of the physical address are

determined.
virtual address) .
* Paging + segmentation
6 bit: 8 bit 8 bit 10 bit. . .
= _,1 > = = ¢ Virtual address space: 32-bit
J ¢ Pagesize: 1KB (2710 bytes)
L] 1 'Yy ¢ PTmax1frame
base . L A
register o I L 4 PTE: 4 byteS (2 2)
¢ Segments per process: Up to 64 (276)
segment L1 L2 ¢
table page table page table
64 entries 256 entries 256 entries
20 bits 10 bits
physical address
3 .‘i 6
(oerg '

Sample Question 10
00

Attribution: from Stanford CS 140 Winter 2007 Final Exam

(16 points) For each of the following protection systems, describe if they more
resemble access control lists (ACLs) or capabilities. Be sure to justify your answer.

. . By Columns: Access Control Lists (ACLs)
Protection Domain so0e
+ Each object has a list of
. . . 060 <user, privilege> pairs
+ Once identity known, provides rules U , ,
o E.g. what is Bob allowed to do? + ACL is simple, implemented in most systems

e Owner, group, world
e E.g. who can do what to file A?

+ Implementation considerations
. . . e Stores ACLs in each file
+ Protection matrix: domains and resources « Use login authentication to identify
e Kernel implements ACLs

+ Q: Any issues?
File A Printer B File C b
Domain 1 R w RW By Rows: Capabilities
00
; ;,g; + For each user, there is a capability list
Domain 2 RW w - = | o A lists of <object, privilege> pairs
Domain 3 R RW + Capabilities provide both naming and protection

e Can only “see” an object if you have a capability
+ Implementation considerations

e Architecture support

e Capabilities stored in the kernel

20 e Capabilities stored in the user space in encrypted format

+ Q: Issues?

Lecture 16

22

Sample Question 10

Attribution: from Stanford CS 140 Winter 2007 Final Exam

A door with a lock that takes a key to unlock.

Answer: Capability. The key is a user-specific capability and the door has no idea
who is opening it.

A door with a badge reader an employee needs to swipe to unlock.

Answer: ACL. A badge identifies the person, and the door security system
maintains a list of people allowed through the door, so the resource is
maintaining a list of (user, privilege) pairs.

Sample Question 11
00

Attribution: from UCSC CMPS 111 Spring 2002 Final Exam

Suppose that you have a UNIX file system where the disk block size is 1KB, and an inode
takes 128 bytes. Disk addresses take 32 bits, and the inode contains space for 64 bytes of data
(a recent optimization), 8 direct addresses, one indirect, one double-indirect and one triple-
indirect (the rest of the space in the inode is taken up with other information such as owner-
ship and protection). An index block is the same size as a disk block. How much space
(including overhead) do files that are: One (1) byte long, 1025 bytes long, 65536 (64KB)
bytes long, and 1048576 (1MB) bytes long require? Hint: it may help if you draw a picture of
how inodes are used to locate the blocks making up a file.

¢ Disk block size: 1KB (2710)

¢ inode: 128 bytes

¢ 32-bit disk address space (4 bytes)
4

inode: 64B data + 8 direct address + 1 indirect pointer
+ 1 double-indirect + 1 triple-indirect

Index block same size as disk block: 1KB (2210)

\ 4

Reminder: Multi-Level Indexed Files

Hybrid Multi-level Indexed Files (Unix) o o6

+ 13 Pointers in a header
« 10 direct pointers ki
e 11: 1-level indirect
e 12: 2-level indirect
e 13: 3-level indirect 7
¢ Pros & Cons _ :
o Infavor of small files H& : data
o Can grow
e Limitis 16G : : data
o Can have lots of seeking

\

data

/

data

5‘@5 12

Lecture 15

10

Sample Question 11 (cont’d)

00
64 B 1KB =
8 data 256 | Up to 256 disk blocks = 256 %8 1KB = 256KB
blocks
4B
1KB = /‘ 1KB =
256 2
T °6 1256 %256 blocks = 65,536 blocks = 64 MB
X X
4B 4B
1KB = 1KB = 1KB =
256 256 256 256738 1KB = 2”724 82710
X X x =2"34= 16 GB
4B 4B 4B
<& Disk block size: 1KB (2”10)
¢ inode: 128 bytes
¢ 32-bit disk address space (4 bytes)
¢ inode: 64B data + 8 direct address + 1 indirect + 1 double-indirect + 1 triple-indirect
<& Index block same size as disk block: 1KB (2/10)

11

Sample Question 11 (cont’d)

00
64 B 1KB =
8 data 250 | Up to 256 disk blocks = 256 %8 1KB = 256KB
blocks
/ 4B
1KB = /‘ 1KB =
=22/ | 20 1956 %256 blocks = 65,536 blocks = 64 MB
4 B 4 B
1KB = 1KB = 1KB =
256 256 256 | 25673 % 1KB =224 R 2A10
: X * | =2"34=16GB
4 B 4 B 4 B
File Size Space

1B inode can store the data > 128 B

12

Sample Question 11 (cont’d)

0 O
64 B 1KB =
8 data 250 | Up to 256 disk blocks = 256 %8 1KB = 256KB
blocks
/ 4B
1KB = /‘ 1KB =
=222 | 20 1956 %256 blocks = 65,536 blocks = 64 MB
4B 4B
1KB=| /| 1kB=| /| 1KB =
256 256 256 256738 1KB =224 82710
X a x =2"34 = 16 GB
4B 4B 4B
File Size Space
1B inode can store the data > 128 B

1025 B inode + 1 data block: 128 + 1024 = 1152 B

13

Sample Question 11 (cont’d)

o0
64 B 1KB =
8 data 250 | Up to 256 disk blocks = 256 %8 1KB = 256KB
blocks / 4B

1KB = /‘ 1KB =
| o256 256

3
(Gerp

2568 256 blocks = 65,536 blocks = 64 MB

b4 X
4B 4 B
1KB = 1KB = 1KB =
256 256 256 256738 1KB =224 82710
X a x =2"34 = 16 GB
4B 4 B 4 B
File Size Space
1B inode can store the data > 128 B
1025 B inode + 1 data block: 128 + 1024 = 1152 B
65,536 B Composition: 64B + 8,192B + 57,280B

Structure: inode + 1 indirect pointer block
Total space: 128B + 8,192B + 1,024B + 56KB(rounded to closest disk

block) = 66,688B 14

Sample Question 12

Consider a disk with the following characteristics:
e Number of surfaces: 8 (=2°)
e Number of tracks / surface: 512 K (=2")
* Number of bytes / track: 8 MB (= 2% bytes)
e Number of sectors / track: 8 K (= 2"%)
e On-disk cache: 16 MB (= 2* bytes)
Attribution:
from U Wisc. CS 537 Fall 2015 Midterm Exam 1) How many heads does this disk have?

2) What is the size of each sector?

3) How many bytes per cylinder?

4) What is the total capacity of this disk?

15

Reminder: HDD Moving Head Mechanism
00

Moving-Head Disk Mechanism

o060
track t «— spindle
4
| | <«1— arm assembly
sector s [|
|
' -~
|
| |
| |
| | .
cylinder ¢ —» | read-write
: | head
| |
platter
_) arm

v rotation

i
i

Lecture 14

16

Sample Question 12

Consider a disk with the following characteristics:
e Number of surfaces: 8 (= 2°)
e Number of tracks / surface: 512 K (= 2")
e Number of bytes / track: 8 MB (= 2% bytes)
e Number of sectors / track: 8 K (= 2")
e On-disk cache: 16 MB (= 2** bytes)
Attribution:
from U Wisc. CS 537 Fall 2015 Midterm Exam 1) How many heads does this disk have?

Answer:
8 surfaces, 1 head per surface needed = 8 heads
2) What is the size of each sector?
Answer:

bytes/sector = (bytes/track) / (sectors/track) 3) How many bytes per cylinder?
bytes/sector = 2423 /2713 = 2710 = 1KB

Answer:
bytes/cylinder = (bytes/track) * (tracks/cylinder)
bytes/cylinder = 2423 * 8 = 2126 = 64MB

4) What is the total capacity of this disk?

Answer:
total bytes = (bytes/ cylinder) * cylinders
total bytes = 2726 * 27419 = 2745 = 32TB
17

Sample Question 13

Attribution: from Cornell CS 4410 Spring 2007 Midterm Exam

2. (24 points total) CPU Scheduling. Here is a table of processes and their associated
arrival and running times.

Process ID

Arrival Time

Expected CPU
Running Time

Process 1

5

Process 2

Process 3

Process 4

AN DN |=—= O

5
3
2

a. (12 points) Show the scheduling order for these processes under First-In-First-Out (FIFO),
Shortest-Job First (SJF), and Round-Robin (RR) with a quantum = 1 time unit. Assume
that the context switch overhead is 0 and new processes are added to the head of the

queue except for FIFO.

s:«:‘
Cotp " coiee?

(SUE NUMINE—

18

Sample Question 13 (cont’d)

Attribution: from Cornell CS 4410 Spring 2007 Midterm Exam

Process ID | Arrival Time | Expected CPU
Running Time

Process 1 0 5

Process 2 1 5

Process 3 5 3

Process 4 6 2

FIFO

19

Sample Question 13 (cont’d)

Attribution: from Cornell CS 4410 Spring 2007 Midterm Exam

Process ID | Arrival Time | Expected CPU
Running Time

Process 1 0 5

Process 2 1 5

Process 3 5 3

Process 4 6 2

FIFO

SJF

20

Sample Question 13 (cont’d)
o080

Attribution: from Cornell CS 4410 Spring 2007 Midterm Exam

Process ID | Arrival Time | Expected CPU
Running Time

Process 1 0 5

Process 2 1 5

Process 3 5 3

Process 4 6 2

FIFO | 1 1 1 1 1 2 2 2 2 2 3 3 3 4 4
SJF | 1 1 1 1 1 3 3 3 4 4 2 2 2 2 2
RR | 1 2 1 2 1 3 4 2 1 3 4 2 1 3 2

The second part of the question asks about wait times.

21

Sample Question 14
00

Attribution: from UC Berkeley CS 162 Fall 2006 Midterm Exam

For each of the following techniques for synchronization, assume that there are two threads
competing to execute a critical section. Further, assume that:
1. A critical section is “protected” if only one thread can enter the critical section at a time.
2. The synchronization is “fair” if, when each thread attempts to acquire the critical section
repeadedly, then each thread will enter the critical section about the same number of times.
Note: Assume that all flags start out “false”. Also assume that store is atomic.

Synchronization technique #1: Suppose each thread does the following:

I. while (flag == true)

2. do nothing;

3. flag = true;

4, Execute Critical Section;
5. flag = false;

Problem 3a[2pts]: Will this protect the critical section? If “yes”, explain why. If “no”, give an
example interleaving that will fail to protect the critical section.

Answer: No

Example: Thread A runs line 1, determines flag is false, and gets context-switched.
Then, thread B runs line 1, and it also determines flag is false.
Now threads A and B can both access critical section.

22

)‘
-] [~
i 5

Sample Question 14 (cont’d)
o080

Attribution: from UC Berkeley CS 162 Fall 2006 Midterm Exam

For each of the following techniques for synchronization, assume that there are two threads
competing to execute a critical section. Further, assume that:
1. A critical section is “protected” if only one thread can enter the critical section at a time.
2. The synchronization is “fair” if, when each thread attempts to acquire the critical section
repeadedly, then each thread will enter the critical section about the same number of times.
Note: Assume that all flags start out “false”. Also assume that store is atomic.

Synchronization technique #1: Suppose each thread does the following:

I. while (flag == true)
do nothing;
flag = true;
Execute Critical Section;
flag = false;

g b w N

Problem 3b[2pts]: Assume this code protects the critical section. Is this code “fair”? Explain.

Answer: Yes
This code is symmetric and thus each thread has an equal chance.

23

Sample Question 14 (cont’d)
o080

Attribution: from UC Berkeley CS 162 Fall 2006 Midterm Exam

For each of the following techniques for synchronization, assume that there are two threads
competing to execute a critical section. Further, assume that:
1. A critical section is “protected” if only one thread can enter the critical section at a time.
2. The synchronization is “fair” if, when each thread attempts to acquire the critical section
repeadedly, then each thread will enter the critical section about the same number of times.
Note: Assume that all flags start out “false”. Also assume that store is atomic.

Synchronization technique #2: Suppose we have different code for each thread:

THREAD A THREAD B
Al. flag A = true; Bl. flag B = true;
A2. while (flag B == true) B2. if (flag A == false)
A3. do nothing; B3. Execute Critical Section;

A4, Execute Critical Section; B4. flag B = false;
A5. flag A = false;

Problem 3c[2pts]: Will this protect the critical section? If “yes”, explain why. If “no”, give an
example interleaving that will fail to protect the critical section.

Answer: Yes

Thread A only enters the critical section when flag_B is false (this is satisfied only while
thread B is executing before B1 or after B4).

Thread B only enters the critical section when flag_A is false (this is satisfied only while

thread A is executing before A1 or after A5). Y

)‘
-] [~
i 5

Sample Question 14 (cont’d)
o080

Attribution: from UC Berkeley CS 162 Fall 2006 Midterm Exam

For each of the following techniques for synchronization, assume that there are two threads
competing to execute a critical section. Further, assume that:
1. A critical section is “protected” if only one thread can enter the critical section at a time.
2. The synchronization is “fair” if, when each thread attempts to acquire the critical section
repeadedly, then each thread will enter the critical section about the same number of times.
Note: Assume that all flags start out “false”. Also assume that store is atomic.

Synchronization technique #2: Suppose we have different code for each thread:

THREAD A THREAD B
Al. flag A = true; Bl. flag B = true;
A2. while (flag B == true) B2. if (flag A == false)
A3. do nothing; B3. Execute Critical Section;

A4, Execute Critical Section; B4. flag B = false;
A5. flag A = false;

IProblem 3d[2pts]: Assume this code protects the critical section. Is this code “fair”? Explain.l

Answer: No

Thread A always gets a chance to run the critical section during an execution of A1-A5. On the
other hand, Thread B will be prevented from running the critical section whenever Thread A is in
that region. If A and B are running in a tight loop, Thread B only gets to run the critical section if

it is lucky enough to execute B2 between the execution of A5 and the next execution of Al. ’5

)‘
-] [~
i 5

Sample Question 14 (cont’d)
o080

Attribution: from UC Berkeley CS 162 Fall 2006 Midterm Exam

For each of the following techniques for synchronization, assume that there are two threads
competing to execute a critical section. Further, assume that:
1. A critical section is “protected” if only one thread can enter the critical section at a time.
2. The synchronization is “fair” if, when each thread attempts to acquire the critical section
repeadedly, then each thread will enter the critical section about the same number of times.
Note: Assume that all flags start out “false”. Also assume that store is atomic.

Synchronization technique #3: Suppose each thread does the following:

1. while (TestAndSet (flag) == false)
2. do nothing;

3. Execute Critical Section;

4, flag = false;

Problem 3e[3pts]: Will this protect the critical section? If “yes”, explain why. If “no”, explain
and explain how to fix it.

Answer: No

Since TAS sets a memory location to 1 (true), the locked condition is indicated by the
value of flag == true. Hence, the above code doesn’t wait when the lock is already

taken. Hence, it doesn’t protect the critical section. To fix the code, we should replace
TAS(flag) == false with TAS(flag) == true.

)‘
-] [~
i 5

26

Sample Question 14 (cont’d)
o080

Attribution: from UC Berkeley CS 162 Fall 2006 Midterm Exam

For each of the following techniques for synchronization, assume that there are two threads
competing to execute a critical section. Further, assume that:
1. A critical section is “protected” if only one thread can enter the critical section at a time.
2. The synchronization is “fair” if, when each thread attempts to acquire the critical section
repeadedly, then each thread will enter the critical section about the same number of times.
Note: Assume that all flags start out “false”. Also assume that store is atomic.

Synchronization technique #3: Suppose each thread does the following:

1. while (TestAndSet(flag) == false)
2 do nothing;

3. Execute Critical Section;

4 flag = false;

Problem 3f[2pts]: Assume the above code (or your fixed version). Will this code be “fair”?
Explain.

Answer: Yes — The code is symmetric

27

Summary

\l/

We all made it through this crazy semester! @

Cover all lectures, study MOS reading assignments, and
make sure you are fully familiar with course projects.

Please make sure to plan for Project 6 ahead of the time.

Reach out to us with your questions.

28

