COS 318: Operating Systems
@00

Review Session 1

Outline

¢ Elaborate on the scope of the final exam

¢ Practice 8 sample questions

The Scope of The Final Exam

®)
r—

Lecture Slides

MOS Reading
Assignments

0 90
g iy
RS D

Projects

Exam Scope: Lecture Slides

Cover all lectures.

Make sure you
e understand concepts, and
e reason through code snippets, algorithms, and examples

In case you have difficulties with a topic and need to watch
a lecture recording, feel free to email Dr. Shahrad.

Exam Scope: MOS Reading Assighments

* You were expected to complete those readings before lectures.
* Make sure you cover them fully for the final exam.
* Those three papers not assessed in the final exam.

You are expected to complete the readings before the corresponding lecture.

Date Topic Reading

8/31 | Introduction MOS 1.1-1.3

9/2 Overview MOS 1.4-1.5

9/7 Protection and Virtual Memory MOS 1.6-1.7, 3.1-3.3

9/9 Processes and Threads MOS 2.1, 2.2.1-2.2.3

9/14 | Threads Implementation MOS 2.2.4-2.2.9

9/16 | Synchronization: Mutual Exclusion MOS 2.3.3, 2.3.6

9/21 | Synchronization: Semaphores, Monitors, and Condition Variables | MOS 2.3.5, 2.3.7, Birrell's paper
9/23 | CPU Scheduling MOS 2.4

9/28 | Message Passing MOS 2.3.8, 8.2.1-8.2.4

9/30 | Deadlock MOS 6

10/5 | Virtual Memory Address Translation MOS 3.1-3.3

10/7 | Virtual Memory Paging and Caching MOS 3.4-3.6, 10.4, 11.5

10/14 | |/0 Devices and Drivers MOS 5.1-5.3, 5.5-5.9

10/19 | Storage Devices MOS 5.4

10/21 | Storage Devices (Cont.)

10/26 | File Structure MOS 4.2, 4.3.1-4.3.3, 4.5.2-4.5.3
10/28 | File Systems: Networked, Abstractions, and Protection MOS 10.6.3-10.6.4, NetApp paper
11/2 | File Caching and Reliability MOS 4.1, 9.3.1-9.3.3

11/4 | File Caching and Reliability (Cont.)

11/9 | Virtual Machine Monitors MOS 7.3, 7.4.1, 7.6, 7.7, Virtual Machine Monitors paper
11/11 | InterNetworking

e — 5

Exam Scope: Course Projects

Only the first five projects: P1, P2, P3, P4, and P5

If your teammates did all the work, you might have
difficulties here.

® Make sure to fully understand how projects worked.

Read precept slides, watch precept recordings, and review
design review questions.

Sample Question 1
00

What needs to be saved and restored on a context switch
between two threads in the same process?
e We need to save the registers, stack pointer, and program
counter into the thread control block (TCB) of the thread that is

no longer running. Then, we need to reload the registers, stack
pointer, and program counter from the TCB of the new thread.

The answer above is brief, explicit, and accurate.

Sample Question 2
00

Which of the following typically require assistance from
hardware to implement well? For those that do, circle
them, and name the necessary hardware support and its

purpose. For those that don’t briefly explain why (one or
two sentences at most).

® System call
® Thread creation

® Process context switch

Hardware assistance for system call?

¢ Requires system support

¢ In particular to set CPU’s protection
bit to run in the kernel mode

Some Protection Goals Architecture Support for CPU Protection
o000 00
* CPU * Privileged Mode
e Allow kernel to take CPU away to prevent a user from
using CPU forever An interrupt or exception/trap (INT)
e Users should not have this ability l

¢ Memory User mode Kernel (privileged) mode
e Prevent a user from accessing others’ data * Regular instructions * Regular instructions
p t f difving k | cod d dat » Access user memory * Privileged instructions
e Prevent users from modifying kernel code and data - Access User memory

structures » Access kernel memory

+ /0 I |
e Prevent users from performing “illegal” 1/0s A special instruction (IRET)
¢ Difference between protection and security?

#X_i’l
ok
]

)
I

L}

Lecture 3

Hardware assistance for thread creation?

00
¢ Creating kernel threads require system calls and
hence need a protection bit. Therefore need V
hardware support.
¢ User-level threads do not need assistance from x
hardware.

You might encounter such questions in the exam.
Support your answer with a clear argument and
consider cases not stated in the question.

%‘4“ 10
(Gerp g

(SUE NUMINE—

HW assistance for process context switch?
o080

¢ Timer interrupt used in preemptive scheduler

When to schedule?

o000
1. New process created i
e fork() - child process created . i)
e Schedule parent or child (or both) Preemptive and Non-Preemptive Scheduling
2. Process dies and returns exit status P R
e Due to calling exit (), or fatal exception/signal ¢ Preemption happens due to:
3. Blocked process 1. Timer interrupt, or

2. Higher priority process now ready Terminate

e E.g.on /O and semaphore
(call scheduler)

4. /O interrupt
5. HW clock interrupt

e E.g., with 250 Hz frequency
e Preemptive scheduler uses this to replace running processes

Block for resource
(call scheduler)

Yield, Interrupt
(call scheduler)

Create Resource free,

I/0 completion interrupt
@ (move to ready queue)

Lecture 8 .

Sample Question 3

Consider a FAT-based (File Allocation Table) file system. Entries in the table are 16
bits wide. A user wants to install a disk with 131072 512-byte sectors.
a. What is a potential problem?

b. Describe a solution to this problem and explain the trade-offs involved.

Attribution: from UC Berkeley CS162 Fall 2011 Final Exam
A. Answer:

e Each entryis a disk sector address

e 16 bits allows only 65,536 sectors File Allocation Table (FAT) o000

- Idea is to keep the linked list metadata
(pointers) in memory, rather than on disk

B. SO I UtiO n : - Allocation table at beginning of each volume 0
+ N entries for N blocks
e Make each FAT entry access a logical e stuctue (MS.D0%)
. . « Afileis a linked list of blocks 217 619
SECtor that |S 2 phySICal Sectors « File metadata points to first block of file ‘
o The entry of first block points to next, ... 399/’ EOF \
e Trade-off: e)
- Cons 619 Ll
e Con:increased internal fragmentation « Random access: sil not good
« Wastes space - table for each file

@ expensive to keep in memory FAT Allocation Table
A 8

e Pros: maintaining the size of the FAT,
and backward compatibility

Lecture 15 12

Sample Question 4

In contrast to a cooperative scheduler, a preemptive scheduler supports the
following state transition:

(@) Ready — running
(b) Running — ready
(c) Ready — blocked

(d) Blocked — running

Attribution: from Rutgers CS 416 Spring 2011 Final Exam Review

¢ Answer: Running = ready

Be prepared to encounter multiple-choice questions in the exam.

13

Sample Question 5

Threads that are part of the same process share the same stack.

Threads that are part of the same process can access the same TLB entries.

With kernel-level threads, multiple threads from the same process can be scheduled on multiple CPUs

simultaneously.

Attribution: from U Wisc-Madison CS 537 Fall 2016 Midterm Exam

14

Sample Question 5
00

Threads that are part of the same process share the same stack.
False — each thread has its own stack (specifically its own stack and frame pointer) although the
stacks are placed in the same address space.

Threads that are part of the same process can access the same TLB entries.

With kernel-level threads, multiple threads from the same process can be scheduled on multiple CPUs

simultaneously.

Attribution: from U Wisc-Madison CS 537 Fall 2016 Midterm Exam

15

Sample Question 5
00

Threads that are part of the same process share the same stack.
False — each thread has its own stack (specifically its own stack and frame pointer) although the
stacks are placed in the same address space.

Threads that are part of the same process can access the same TLB entries.
True — since they share an address space, they have the same vpn->ppn translations and the
same TLB entries are valid.

With kernel-level threads, multiple threads from the same process can be scheduled on multiple CPUs

simultaneously.

Attribution: from U Wisc-Madison CS 537 Fall 2016 Midterm Exam

16

Sample Question 5
00

Threads that are part of the same process share the same stack.
False — each thread has its own stack (specifically its own stack and frame pointer) although the
stacks are placed in the same address space.
Threads that are part of the same process can access the same TLB entries.
True — since they share an address space, they have the same vpn->ppn translations and the
same TLB entries are valid.
With kernel-level threads, multiple threads from the same process can be scheduled on multiple CPUs
simultaneously.
True — this is the benefit of kernel-level threads (true thread support from OS); we could not do

this with user-level threads.

Attribution: from U Wisc-Madison CS 537 Fall 2016 Midterm Exam

Be prepared to encounter true/false questions in the exam.

17

Sample Question 6
00

if the semaphore operations Wait and Signal are not executed atomically,
then mutual exclusion may be violated. Assume that Wait and Signal are implemented as below:

void Wait (Semaphore S) {
while (S.count <= 0) {}
S.count = S.count - 1;

}

void Signal (Semaphore S) {
S.count = S.count + 1;

}

Describe a scenario of context switches where two threads, T1 and T2, can both enter a critical section
guarded by a single mutex semaphore as a result of a lack of atomicity.

Attribution: from UCSD CSE 120 Fall 2016 Final Exam

‘%‘i 18
S

(SUE NUMINE—

Sample Question 6

00
S=1
T1 T2
void Wait (Semaphore S) {
wswitch

—rI\\\\\’ void Wait (Semaphore S) {
while (S.count <= 0) {}
S.count = S.count - 1;

}

ik

Cpﬂ“ﬂ%///////

S.count = S.count - 1;

}

time 19

Sample Question 7

Attribution: from U Toronto ECE 344 2018 Midterm Exam

(4) (9 marks) Which of the following operations will trigger the CPU to transition from user mode
to kernel mode (i.e., it is an event)? If it is an event, further classify it as either exception or
interrupt.

e Apr ivides an integer by zero

A) Triggers an exception (B) Triggers an interrupt (C) Not an event
e A pro sses memory at address 0x00000000

A) Triggers an exception (B) Triggers an interrupt (C) Not an event
e User presses key "a" on the keybo using shell

(A) Triggers an exception (B) Triggers an interrupt >(C) Not an event

e A process executes test-and-set instruction
(A) Triggers an exception (B) Triggers an interrupt ((C) Not an event

e The email client receives an email
(A) Triggers an exception @ggers an interrupt > (C) Not an event

20

Sample Question 8
00

FIFO Attribution: from NYU CS 372 Spring 2010 Final Exam

6. [2 points] Consider a machine with 32 MB of running an operating system with virtual
memory and swapping. The OS’s page replacement policy is: 1 a page fault, a process needs a
new physical page in RAM, evict the page that has been in RAM in the longest, and write it to the
disk if it is dirty. The machine owner notices that for some workloads, the operating system does a lot
of disk writes, and the owner is unhappy about that. In response, the owner installs an extra 8 MB of
RAM, and re-runs the workload.

Circle True or False for each item below:

Example: working set is 38MB

Looped access to a 400MB working set, every access causes a PF.

21

Belady’s Anomaly (FIFO case)

00
, Access Sequence
Fits 3 pages >
0 1 2 3 0 1 4 0 1 2 3 4
Youngest o|1(2|3|0|1|4]|4|4]|2]|3]3
0 1 2 3 0 1 1 1 4 2 2
Oldest O|1]2|3|0|0|0]|1]|4]|4
PF PF PF PF PF PF PF PF PF
9 Page Faults
Fits 4 pages
0 1 2 3 0 1 4 0 1 2 3 4
Youngest o1 |2|3|3[3|4]0|1|2]|3]4
0 1 2 2 2 3 4 0 1 2 3
Oldest 0 1 1 1 2 3 4 0 1 2
0 0 0 1 2 3 | 4 0 1
PF PF PF PF PF PF PF PF PF PF

10 Page Faults
22

Summary

¢ Cover all lectures.
¢ Study MOS reading assignments.
¢ Make sure you are fully familiar with course projects.

Best of luck with Project 5!

23

