
COS 318: Operating Systems

Virtual Machine Monitors

Virtual Machines

u We have seen how the OS virtualizes subsystems
l CPU, Memory, IO
l To give applications illusions about owning the system

u What about:
l Virtualizing the whole system
l Giving OSes the illusion of a system that isn’t real

2

The Idea

3

Applications OS

Hardware

Pr
og

ra
m

m
in

g
in

te
rfa

ce

Applications OS
Virtualized
Hardware

Pr
og

ra
m

m
in

g
in

te
rfa

ce

Applications OS

Pr
og

ra
m

m
in

g
in

te
rfa

ce

Virtualized
Hardware

Virtualized
Hardware

Hardware

Virtual Machine Monitor (VMM)
u Sits between multiples OSes and hardware (or a host OS)
u Presents a hardware interface to the OSes above
u Gives the illusion to each OS above that it controls the

whole machine
l Actually, the VMM does, and each OS sees a virtual machine
l The VMs (and OSes) share the actual hardware resources

u Manages (multiplexes) resources among several virtual
machines (VMs)

u Isolates VMs from each other
u Similar to what an OS does: abstraction, resource mgmt
u a.k.a. Hypervisor

4

Why virtualize?

u Isolation and safety
l SW-related faults more prevalent than HW-related issues

• Bugs, poor design, mis-configuration, etc.

u Efficiency and cost reduction

5

Email
Server

Web
Server DBDB Email

Server
Web

Server DBDB

A developer testing a new app
on different OSs.

Co-locate different users.

U1 U2 U3 U4

VMM Implementation Goals
u Manageability

l Creation, maintenance, administration, provisioning, etc.
u Performance

l Overhead of virtualization should be small
u Isolation, like separate physical machines

l Activity of one VM should not impact other active VMs
l Data of one VM is inaccessible by another

u Scalability
l Minimize cost per VM; run more VMs on hardware

u Reliability
Same goals as for many subsystems

6

Type 1 and Type 2 Hypervisors

7

Hardware

Type 1 Hypervisor

Guest OS
…

…

Guest OS

…

Guest OS Processes

Hardware

Host OS

Type 2 Hypervisor

Guest OS

… Host OS
Processes

Type 1 Type 2
(a.k.a. hosted hypervisor)

Virtualization Styles

u Full virtualization
l Virtual machine mimics a physical machine

• Not necessarily exactly like the underlying hardware itself
l Run guest OS unchanged
l VMM is transparent to the OS

u Para-virtualization
l Guest OS is changed to cooperate with VMM
l Sacrifice transparency for better performance
l E.g., VMM can provide “hypervisor API” so guest can perform

certain functions, e.g. with optimizations for performance
u Process virtualization

l Allow running a process written for a different OS
l Example: Wine

8

History

u Have been around since 1960’s on mainframes
l Used to run apps on different OSes on same (very

expensive) mainframe
l Good example – VM/370

u Computers became cheaper, people lost interest
u Have resurfaced

l Server Consolidation: save space, power; data centers
l High-Performance Compute Clusters: run different OSes
l Managed desktop / thin-client

• Save desktop in a VM and bring it with you on a USB drive
l Software development / kernel hacking

• Crash your development kernel but don’t disable whole machine
9

VMM Implementation

Three main requirements:
u Safety: VMM having full control of virtualized resources
u Fidelity: program behaves as if running on bare hardware
u Efficiency: minimal intervention and low overhead

Main VMM subsystems:
u Processor Virtualization
u I/O virtualization
u Memory Virtualization

11

Popek and Goldberg (1974)
u Sensitive instructions:

l Should be executed in kernel mode for
correct behavior

u Privileged instructions:
l Cause a trap when executed

in user mode

u CPU architecture is virtualizable only
if sensitive instructions are subset of
privileged instructions

• i.e. sensitive instructions will always trap if
run in user mode

u When guest OS, which runs in user
mode, runs a sensitive instruction,
this must trap to VMM so it maintains
control. 12

Example: System Call (Type 1 Hypervisor)

Process Operating System VMM
1.System call: Trap to OS

2. Process trapped: call OS
trap handler (at reduced
privilege)

3. OS trap handler: Decode
trap and execute syscall;
When done: issue return-
from-trap

4. OS tried to return from
trap; do real return-from-trap

5. Resume execution (@PC
after trap)

13

Virtualizablity of the x86 Architecture
u x86 architecture was not fully virtualizable

l Certain privileged instructions behave differently when run
in unprivileged mode, e.g. do nothing (e.g. POPF)

l Certain unprivileged instructions can access privileged
state (so guest OS would be able to see that it’s not
running in kernel mode)

u Techniques to address it:
l Replace non-virtualizable instructions with easily virtualized

ones statically (Paravirtualization)
l Perform Binary Translation (Full Virtualization)

u In 2005 Intel and AMD added virtualization support
l Intel: Virtualization Technology (VT), AMD: AMD-V

14

Examples of Hypervisors

15

Type 1 Type 2

Process Virtualization Wine

Full Virtualization
without HW support ESX Server 1.0 VMware Workstation 1

Full Virtualization with
HW support

Xen
Microsoft Hyper-V
VMware vSphere

Linux KVM
VMWare Fusion

Para-virtualization Xen 1.0

I/O Virtualization

u Issue: Lots of I/O devices
u Problem: Writing device drivers for all I/O device in

the VMM layer is not a feasible option
u Insight: Device driver already written for popular

Operating Systems
u One Solution:

l Present virtual I/O devices to guest VMs
l Channel I/O requests to a trusted host VM running a popular

OS that has the device drivers

16

I/O Virtualization

17

VMM + Device DriversVMM

(a) Virtual DD, channel to guest OS
- e.g. Xen

(b) Integrate DD with VMM
- e.g. VMware ESX (Linux DDs)

Memory Virtualization

u Traditional way is to have the VMM maintain a shadow
page table per VM

u The shadow page keeps mapping from virtual pages
within a VM to real physical pages allotted by VMM

u When VM tries to change MMU to point to a specific
page table, this traps to VMM which updates MMU to
point to the shadow page table
l Shadow PT has actual mappings between virtual pages in VM

and real physical pages in machine
u Keeping shadow page table in sync with guest PT:

l When guest OS updates page table, VMM updates shadow
l E.g. pages of guest OS page table marked read-only

18

Case Study: VMware ESX Server

u Type I VMM - Runs on bare hardware

u Full-virtualized – Legacy OS can run unmodified on top of
ESX server

u Fully controls hardware resources and provides good
performance

19

ESX Server – CPU Virtualization

u Most user code executes in Direct Execution
mode; near native performance

u For kernel code, uses runtime Binary Translation
for x86 virtualization
l Privileged mode code is run under control of a Binary

Translator, which emulates problematic instructions
l Fast compared to other binary translators as source and

destination instruction sets are nearly identical

20

ESX Server – Memory Virtualization

u Maintains shadow page tables with virtual to machine
address mappings.

u Shadow page tables are used by the physical processor
u ESX maintains a “pmap” data structure for each VM,

which holds “physical” to machine address mappings
u Shadow page tables are kept consistent with pmap
u With pmap, ESX can easily remap a physical to machine

page mapping, without guest VM knowing the difference

21

ESX Server – Memory Mgmt
u Page reclamation

l Problem: VMM does not have as good information on page
usage as guest OS, for actual page replacement algorithms

l Solution: Ballooning technique
• Reclaims memory from other VMs when memory is

overcommitted

u Page sharing
l Many VMs will use the same pages
l Solution: – Content based sharing
l Eliminates redundancy and saves memory pages when VMs

use same operating system and applications

22

ESX Server- Ballooning

23

ESX Server – Page Sharing

24

• Copy-on-write for writing shared pages

Real World Page Sharing

25

ESX Server – I/O Virtualization

u Has highly optimized storage subsystem for networking
and storage devices
l Directly integrated into the VMM
l Uses device drivers from Linux kernel to talk directly to device

u Low performance devices are channeled to special
“host” VM, which runs a full Linux OS

26

VMM + Device Drivers VMM

VMware Workstation

u Type II VMM - Runs on host operating system
u Full-virtualized – Legacy OS can run unmodified on

top of VMware Workstation
u Appears like a process to the Host OS

27

Workstation - Virtualization

u CPU Virtualization and Memory Virtualization
l Uses Similar Techniques as the VMware ESX server

u I/O Virtualization
l Workstation relies on the Host OS for satisfying I/O

requests
l I/O incurs huge overhead as it has to switch to the Host OS

on every IN/OUT instruction.
l E.g., Virtual disk maps to a file in Host OS

28

Workstation – Virtualize NIC

29

Xen 1.0

u Type I VMM
u Para-virtualized
u Open-source
u Designed to run about 100 virtual machines on a single

machine

30

Xen – CPU Virtualization

u Privileged instructions are para-virtualized by requiring
them to be validated and executed with Xen

u Processor Rings
l Guest applications run in Ring 3
l Guest OS runs in Ring 1 (not ring 0 as without virtualization)
l Xen runs in Ring 0
l So if guest OS executes privileged instruction, it traps to Xen

31

Xen – Memory Virtualization(1)

u Initial memory allocation is specified and memory is
statically partitioned

u A maximum allowable reservation is also specified.
u Balloon driver technique similar to ESX server used to

reclaim pages

32

Xen – Memory Virtualization(2)

u Guest OS is responsible for allocating and managing
hardware page table

u Xen involvement is limited to ensure safety and isolation
u OS maps Xen VMM into the top 64 MB section of every

address space to avoid TLB flushes when entering and
leaving the VMM

33

Xen – I/O Virtualization

u Xen exposes its own set of clean and simple device
abstractions – doesn’t emulate existing devices

u I/O data is transferred to and from each domain via Xen,
using shared memory, asynchronous buffer descriptor
rings

u Xen supports lightweight event delivery mechanism used
for sending asynchronous notifications to domains

34

Summary

u Classifying Virtual Machine Monitors
l Type I vs. type II
l Full vs. para-virtualization

u Processor virtualization
u Memory virtualization
u I/O virtualization

35

