
COS 318: Operating Systems

File Systems Reliability and 
Performance (Contd.)



2

Topics
◆ Journaling and LFS
◆ Copy on Write and Write Anywhere (NetApp WAFL)



3

Revisit Implementation of Transactions
◆ BeginTransaction

● Start using a “write-ahead” log on disk
● Log all updates

◆ Commit
● Write “commit” at the end of the log
● Then “write-behind” to disk by writing updates to disk
● Clear the log 

◆ Rollback
● Clear the log

◆ Crash recovery
● If there is no “commit” in the log, do nothing
● If there is “commit,” replay the log and clear the log

◆ Issues
● All updates on the log must be idempotent
● Each transaction has an Id or TID
● Must have a way to confirm that a disk write completes



Journaling File System
◆ Consistent updates using transactions

● Recovery is simple
◆ Store the log on disk storage 

● Overhead is high for journaling all updates
● SW for commodity hardware journaling only metadata

(Microsoft NTFS and various Linux file systems)
◆ Store the log on NVRAM

● Efficient to journal all updates
● Can achieve fast writes (many IOPS)

◆ “Write behind” performs real updates
● Where to update (i-nodes and data blocks)?
● File layout is critical to performance

4



5

Journaling File System

◆ Example: Append a data block to a file on disk
◆ Journaling all updates

● Execute the following transaction:
BeginTransaction

Update i-node 
Update bitmap
Write data block

Commit

◆ Journaling only metadata
● Write data block
● Execute the following transaction:

BeginTransaction
Update i-node 
Update bitmap

Commit



Log-structured File System (LFS)
◆ Structure the entire file system as a log with segments

● A segment has i-nodes, indirect blocks, and data blocks
● An i-node map maps i-node number to i-node locations
● All writes are sequential

◆ Issues
● There will be holes when deleting files
● Need garbage collection to get rid of holes
● Read performance?

◆ Why? Goal is to improve write performance
● Not to confuse with the log for transactions/journaling
● Also useful for write and wear-leveling with NAND Flash

Unused

Log structured 

Di P Di PDi P Di P Di P

Inode
map



7

WAFL (Write Anywhere File Layout)
◆ WAFL: Write Anywhere File Layout

● The basic NetApp file system
● Puts several of the concepts we’ve studied together

◆ Design goals
● Fast services (more operations/sec and higher bandwidth)
● Support large file systems and allow growing smoothly
● High-performance software RAID (esp for slow writes due to 

parity considerations)
● Restart quickly and consistently after a crash

◆ Special features
● Introduce snapshots, using Copy-on-Write
● Journaling by using NVRAM to implement write-ahead log
● Layout inspired by LFS



8

Snapshots

◆ A snapshot is a read-only copy of the file system
● Introduced in 1993
● It has become a standard feature of today’s file servers

◆ Use snapshots
● System administrator configures the number and frequency of snapshots
● An initial system can keep up to 20 snapshots
● Use snapshots to recover individual files

◆ An example
phoenix% cd .snapshot
phoenix% ls
hourly.0 hourly.2 hourly.4 nightly.0 nightly.2 weekly.1
hourly.1 hourly.3 hourly.5 nightly.1 weekly.0
phoenix%

◆ Q: How much space does a snapshot consume?



9

i-node, Indirect and Data Blocks
◆ WAFL uses 4KB blocks

● i-nodes (evolved from UNIX’s)
● Data blocks

◆ File size < 64 bytes
● i-node stores data directly

◆ File size < 64K bytes
● i-node stores 16 ptrs to data

◆ File size < 64M bytes
● i-node: 16 ptrs to indirect blocks
● Each stores 1K pointers to data

◆ File size > 64M bytes
● i-node: ptrs to doubly indirect blocks

Note: each type points to all blocks at 
same level

Data Data Data

Data Data

Data

Data Data Data



10

WAFL Layout
◆ A WAFL file system has

● A root i-node: root of everything
● An i-node file: contains all i-nodes
● A block map file: indicates free blocks
● An i-node map file: indicates free i-nodes
● Data files: real files that users can see

Metadata
in files



11

Why Keep Metadata in Files
◆ Allow meta-data blocks to be written anywhere on disk

● This is the origin of “Write Anywhere File Layout”
● Any performance advantage?

◆ Easy to increase the size of the file system dynamically
● Adding a disk can lead to adding i-nodes
● Integrate volume manager with WAFL

◆ Enable copy-on-write to create snapshots
● Copy-on-write new data and metadata on new disk locations
● Fixed metadata locations very cumbersome for this

Q: Any exception to “write anywhere?”



12

Snapshot Implementation
◆ WAFL file system is a tree of blocks
◆ Snapshot step 1

● Replicate the root i-node
● New root i-node is the active file system
● Old root i-node is the snapshot

◆ Snapshot step 2…n
● Copy-on-write blocks to the root
● Active root i-node points to the new blocks
● Writes to the new block

C

1

RootRoot

A FDB C

1 2

Modify

C’

Modify

1’



13

File System Consistency
◆ Create a ”consistency point” or hidden snapshot

● Create a consistency point or snapshot every 10 seconds
● On a crash, revert the file system to this snapshot
● Not visible to users

◆ Many requests between consistency points
● Consistency point i
● Many writes
● Consistency point i+1 (advanced atomically)
● Many writes
● …



14

Non-Volatile RAM
◆ Different types

● Flash memory (slower)
● Battery-backed DRAM (fast but battery lasts for only days)

◆ Use an NVRAM to log writes
● Log all write requests since the last consistency point
● A clean shutdown empties NVRAM, creates one more 

snapshot, and turns off NVRAM
● A crash recovery needs to replay log to recover data from 

NVRAM to the most recent snapshot and turn on the system



15

Write Allocation
◆ WAFL can write to any blocks on disk

● File metadata (i-node file, block map file and i-node map file) 
are in files

◆ WAFL can write blocks in any order
● Rely on consistency points to enforce file consistency
● NVRAM to buffer writes to implement ordering

◆ WAFL can allocate disk space for many NFS operations 
at once in a single write episode
● Reduce the number of disk I/Os
● Allocate space that is low latency



16

Snapshot Data Structure
◆ WAFL uses 32-bit 

entries in block map file
● 32-bit for each 4K block
● 32-bit entry = 0: the disk 

block is free
◆ Bit 0 = 1:

active file system 
references the block

◆ Bit 1 = 1:
the most recent snapshot 

references the block



17

Snapshot Creation
◆ Problem

● Many NFS requests may arrive while creating a snapshot
● File cache may need replacements
● Undesirable to suspend the NFS request stream

◆ WAFL solution
● Before a creation, mark dirty cache data “in-snapshot” and 

suspend NFS request stream
● Defer all modifications to “in-snapshot” data
● Modify cache data not marked “in-snapshot”
● Do not flush cache data not marked “in-snapshot”



18

Algorithm
◆ Steps

● Allocate disk space for “in-snapshot” cached i-nodes
• Copy these i-nodes to disk buffer
• Clear “in-snapshot” bit of all cached i-nodes

● Update the block-map file
• For each entry, copy the bit for active FS to the new snapshot

● Flush
• Write all “in-snapshot” disk buffers to their new disk locations
• Restart NFS request stream

● Duplicate the root i-node
◆ Performance

● Typically it takes less than a second



19

Snapshot Deletion
◆ Delete a snapshot’s root i-node
◆ Clear bits in block-map file

● For each entry in block-map file, clear the bit representing the 
snapshot



20

Performance
◆ SPEC SFS benchmark shows 8X faster than others



21

Summary
◆ Journaling and LFS

● Journaling uses transactions to achieve consistency
● LFS improves write performance

◆ WAFL
● Write anywhere layout (inspired by LFS)
● Snapshots have become a standard feature
● Journaling with NVRAM


