
COS 318: Operating Systems

File Caching and Reliability

Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

http://www.cs.princeton.edu/courses/cos318/

2

Topics
◆ Motivating the Problem: File buffer cache
◆ Possible Solutions

3

File Buffer Cache
◆ A large cache in kernel
◆ Read: check if the block is in

● Yes: Copy block to user buffer
● No: Read from storage to buffer

cache and copy to user buffer
◆ Write: check if the block is in

● Yes: Update it with user buffer
● No: Copy block to buffer cache (may

replace a block). Write the block.
◆ Usual questions

● What to cache?
● How to size the cache?
● What to prefetch?
● How and what to replace?
● Which write policies?

User buffer
User

Buffer
cache

Storage

Kernel

4

What to Cache?
◆ For different kinds of blocks

● i-nodes
● Indirect blocks
● Directories
● Data blocks

◆ Issues
● Are all blocks equal?

5

Buffer Cache Size
◆ Competition

● Competes with VM and the rest of the system for memory
◆ Two approaches

● Fixed size
● Variable size

◆ How to adjust buffer cache size?
● Users make decisions
● Working set idea with dynamic adjustments within thresholds

Buffer cache
(90MB)

VM
(110MB)

Buffer cache
(120MB)

VM
(80MB)

6

Why in the Kernel?
◆ DMA

● DMA works with “pinned”
physical memory

◆ Multiple user processes
● Share the buffer cache

◆ Typical replacement strategy
● Global LRU
● Working set for each process

User1 User2 Userk...

Buffer cache

Storage

DMA

7

What to Prefetch?
◆ Optimal

● Prefetch in just enough time to use them
◆ Good news: file accesses have locality

● Temporal locality
● Spatial locality

◆ Common strategies
● Prefetch next k blocks together
● Discard unreferenced blocks
● Layout consecutive blocks to the same cylinder group
● Fetch directory and i-nodes together

◆ Advanced strategy
● Prefetch all small files of a directory
● Prefetch beginning portions of large files

9

Write Policies
◆ Write through

● Write to storage immediately
● Cache is consistent
● Simple, but cause more I/Os

◆ Write back
● Update a block in buffer cache

and mark it as dirty
write to storage later

● Fast writes, absorbs writes, and
enables batching

● So, what’s the problem?

User buffer
User

Buffer
cache

Disk

Kernel

10

Write Back Complications

◆ Tension
● On crash, all modified data in cache is lost.
● Postpone writes ⇒ better performance but more damage

◆ When to write back
● When a block is evicted
● When a file is closed
● On an explicit flush
● When a time interval elapses (30 seconds in Unix)

◆ Issues
● These options have no guarantees about written data being lost

File System Reliability

• What if disk loses power or machine crashes?
● Some operations in progress may complete
● Some operations in progress may be lost
● Overwrite of a block may be only partially complete

• File system wants durability (as a minimum)
● Data previously stored can be retrieved (maybe after some

recovery step), regardless of failure

11

Multiple Updates

• If multiple updates needed to perform some operations,
a crash can occur between them
● Moving a file between directories:

• Delete file from old directory
• Add file to new directory

● Create new file
• Allocate space on disk for header, data
• Write new header to disk
• Add the new file to directory

• What if there is a crash in the middle?

• Problems even with write-through cache

12

Storage Reliability Problem

• Single logical file operation can involve updates to
multiple physical disk blocks
● inode, indirect block, data block, bitmap, …

• At a physical level, operations complete one at a time
● But we want higher level concurrent operations for

performance

• How do we guarantee consistency regardless of when
crash occurs?

13

14

Approaches
◆ Throw everything away and start over

● Done for most things (e.g., make again)
● What about your email?

◆ Check, and recover what you can when stuff gets corrupted:
Reconstruction
◆ Try to fix things after a crash (e.g. “fsck”)
◆ Figure out where you are, make file system consistent

◆ Try not to let stuff get corrupted
◆ Careful ordering to make consistent updates
◆ Copy on Write
◆ Logging and transactions

16

Reconstruction: File Recovery Tools
◆ Physical backup (dump) and recovery

● Dump disk block by block to a backup system
● Backup only changed blocks since the last backup

as an incremental
● Recovery tool is made accordingly

◆ Logical backup (dump) and recovery
● Traverse the logical structure from the root
● Selectively dump what you want to backup
● Verify logical structures as you backup
● Recovery tool selectively move files back

◆ Consistency check (e.g. fsck)
● Start from the root i-node
● Traverse the whole tree and mark reachable files
● Verify the logical structure
● Unreachable blocks are free
● Lots of other consistency checks on superblocks,

inodes, data blocks etc.

/

u

cos318

man

17

Recovery from Disk Block Failures
◆ Boot block

● Create a utility to replace the boot block
● Use a flash memory to duplicate the boot

block and kernel
◆ Super block

● If there is a duplicate, remake the file
system

◆ Free block data structure
● Search all reachable blocks from the root
● Unreachable blocks are free

bitmap

i-node

Indirect Indirect

Data Data Data

20

Approaches
◆ Throw everything away and start over

● Done for most things (e.g., make again)
● What about your email?

◆ Check, and recover what you can when stuff gets corrupted:
Reconstruction
◆ Try to fix things after a crash (e.g. “fsck”)
◆ Figure out where you are, make file system consistent

◆ Try to not let stuff get corrupted:
1. Careful ordering to make consistent updates
2. Copy on Write
3. Logging and transactions

21

i-node
“cos318”

Careful Ordering: Write Metadata First
◆ Modify /u/cos318/foo

● Traverse to /u/cos318/

● Allocate data block

● Write pointer into i-node

● Write new data to foo

i-node
“/”

dir
file

i-node
“u”

dir
file

dir
file

i-node
“foo”

Old
data

New
data

Crash Consistent

Crash Consistent

Crash Inconsistent

Crash Consistent

Writing metadata first can cause inconsistency

22

i-node
“cos318”

Write Data First
◆ Modify /u/cos318/foo

● Traverse to /u/cos318/

● Allocate data block

● Write new data to foo

● Write pointer into i-node

i-node
“/”

dir
file

i-node
“u”

dir
file

dir
file

i-node
“foo”

Old
data

New
data

Crash Consistent

Crash Consistent

Crash Consistent

Crash Consistent

23

1. Consistent Updates: Bottom-Up Order
◆ The general approach is to use a “bottom up” order

● File data blocks, file i-node, directory file, directory i-node, …
◆ What about file buffer cache

● Write back all data blocks
● Update file i-node and write it to disk
● Update directory file and write it to disk
● Update directory i-node and write it to disk (if necessary)
● Continue until no directory update exists

◆ Solve the write back problem?
● Updates are consistent but leave garbage blocks around
● May need to run fsck to clean up once a while

◆ Ideal approach: consistent update without leaving garbage

Careful Ordering in General

• Sequence operations in a specific order
● Careful design to allow sequence to be interrupted safely

• Post-crash recovery
● Read data structures to see if there were any operations in

progress
● Clean up/finish as needed

• Approach taken in FAT, FFS (fsck), and many app-
level recovery schemes (e.g., Word)

24

Careful ordering

• Pros
● Works with minimal support in the disk drive
● Works for most multi-step operations

• Cons
● Can require time-consuming recovery after a failure
● Difficult to reduce every operation to a safely interruptible

sequence of writes
● Difficult to achieve consistency when multiple operations

occur concurrently
● Garbage left around that needs to be collected

30

2: Copy-on-Write

• Never update in place
● To update file system, write a new version of the

blocks/data structures containing the update
● Reuse existing unchanged disk blocks

• Seems expensive. But:
● Updates can be batched
● Almost all disk writes can occur in parallel

• Approach taken in network file server appliances
(WAFL, ZFS)

31

Copy on Write

Indirect
Blocks

Data
Blocks

Inode Array
(in Inode File)

Fixed
Location

Anywhere

Root Inode
Slots

Inode File’s
Indirect Blocks

32

Copy on Write

Indirect
Blocks

Data
Blocks

Inode Array
(in Inode File)

Root Inode
Slots

Inode File’s
Indirect Blocks

Update Last
Block of File

33

Copy on write batch update

Root
Inode

Root
Inode’s

Indirect
Blocks

Inode
File

File’s
Indirect
Blocks

File’s
Data

Blocks

New
Data

Blocks

New
Data

Block of
Inode

File

New
Indirect
Nodes

New
Indirect

Nodes of
Inode

File

New
Root

Inode

34

Copy-on-Write Garbage Collection

• For write efficiency, want contiguous sequences of
free blocks
● Spread across all block groups
● Updates leave dead blocks scattered

• For read efficiency, want data read together to be
together
● Write anywhere leaves related data scattered

=> Background coalescing of live/dead blocks

35

Copy-on-Write

• Pros
● Consistent behavior regardless of failures
● Fast recovery
● High throughput (best if updates are batched)

• Cons
● Potential for high latency
● Small changes require many writes
● Garbage collection essential for performance

• Updates leave dead blocks scattered, but want contiguous
free blocks and grouped related data

36

3: Logging and Transactions

• Instead of modifying data structures on disk directly,
write changes to a journal/log
● Intention list: set of changes we intend to make
● Log/Journal is append-only

• Once changes are on log, safe to apply changes to
data structures on disk
● If there is a crash, recovery can read log to see what

changes were intended

• Once changes are copied, safe to remove log

37

38

Transactions
◆ Group multiple operations to have “ACID” property

● Atomicity
• Any observed result is as if the atomic set all happened or none

happened (no partial operations)
● Consistency

• Yields a correct transformation of the state
● Isolation (Serializability)

• Transactions appear to happen one after the other, not
interleaved

● Durability (Persistency)
• Once it happens (is committed), stays happened

◆ Question
● Do critical sections have ACID property?

39

Transactions
◆ Bundle operations into a transaction
◆ Basic idea: Do operations ‘tentatively’. If get to commit, great.

Otherwise, roll back operations as if transaction never happened

◆ Primitives
● BeginTransaction

• Mark the beginning of the transaction
● Commit (End transaction)

• When transaction is done
● Rollback (Abort transaction)

• Undo all the actions since “Begin transaction.”

◆ Rules
● Transactions can run concurrently
● Rollback can execute anytime
● Sophisticated transaction systems allow nested transactions

Transaction Implementation

• Example: money transfer from account x to account y:

Begin transaction
S = S - $100
C = C + $100

Commit

• Keep “redo” log on disk of all changes in transaction.
● A log is like a journal, never erased, record of everything

you’ve done
● Once both changes are on log, transaction is committed.
● Then can “write behind” changes to disk --- if crash after

commit, replay log to make sure updates get to main disk

40

41

Implementation
◆ BeginTransaction

● Start using a “write-ahead” log on disk
● Log all updates

◆ Commit
● Write “commit” at the end of the log
● Then “write-behind” to disk by writing updates to disk
● Clear the log

◆ Rollback
● Clear the log

◆ Crash recovery
● If there is no “commit” in the log, do nothing
● If there is a “commit,” replay the log and clear the log

◆ Assumptions
● Writing to disk is correct (recall error detection and correction)
● Disk is in a good state before we start

42

An Example: Atomic Money Transfer
◆ Move $100 from account S to C (1 thread):

BeginTransaction
S = S - $100;
C = C + $100;

Commit

◆ Steps:
1: Write new value of S to log
2: Write new value of C to log
3: Write commit
4: Write S to disk
5: Write C to disk
6: Clear the log and reclaim space

◆ Possible crashes
● After 1
● After 2
● After 3 before 4 and 5

C = 110
S = 700

C = 10
S = 800
C = 110
S = 700

S=700 C=110 Commit

Transaction implementation (cont’d)

S=700 C=110 commit

1. Write new value of S to log
2. Write new value of C to log
3. Write commit
4. Write S to disk
5. Write C to disk
6. Reclaim space on log

! What if we crash after 1?
! No commit, nothing on disk, so just

ignore changes
! What if we crash after 2? Ditto
! What if we crash after 3 before 4 or 5?

! Commit written to log, so replay those
changes back to disk

43

! What if we crash while we are writing
“commit”?
! As with concurrency, we need some

primitive atomic operation or else can’t
build anything. (e.g., writing a single sector
on disk is atomic)

49

Revisit The Implementation
◆ BeginTransaction

● Start using a “write-ahead” log on disk
● Log all updates

◆ Commit
● Write “commit” at the end of the log
● Single disk write to make transaction durable
● Then “write-behind” to disk by writing updates to disk
● Clear the log

◆ Rollback
● Clear the log

◆ Crash recovery
● If there is no “commit” in the log, do nothing
● If there is “commit,” replay the log and clear the log

◆ Question: What if there is a crash during the recovery?

Performance

• Log written sequentially
● Often kept in flash storage

• Asynchronous write back
● Any order as long as all changes are logged before commit,

and all write backs occur after commit

• Can process multiple transactions
● Transaction ID in each log entry
● Transaction completed iff its commit record is in log

50

Transaction Isolation (Serializability)

Process A

move file from dir x to y
mv x/file y/

Process B

grep across x and y
grep x/* y/* > log

What if grep starts after changes are logged, but before
commit?

51

Transaction isolation

Process A

Lock x, y
move file from x to y

mv x/file y/

Commit and release x,y

Process B

Lock x, y, log
grep across x and y

grep x/* y/* > log

Commit and release x, y, log

Grep occurs either before or after move

52

53

Two-Phase Locking for Transactions

◆ First phase
● Acquire all locks (avoids deadlock concerns)

◆ Second phase
● All unlocks happen at commit operation (no individual release

operations)
● Rollback operation: always undo the changes first and then

release all locks

Thread B can’t see any of A’s changes until A commits and releases
locks. This provides serializability.

Serializability

• With two phase locking and redo logging, transactions
appear to occur in a sequential order (serializability)
● Either: grep then move or move then grep

• Other implementations can also provide serializability
● Optimistic concurrency control: abort any transaction that

would conflict with serializability

54

56

Use Transactions in File Systems
◆ Make a file operation a transaction

● Create a file
● Move a file
● Write a chunk of data
● …

◆ Make arbitrary number of file operations a transaction
● Make sure logging is idempotent
● Recovery by replaying the log
● Called “logging file system” or “journaling file system”

57

Performance Issue with Logging
◆ For every disk write, we now have two disk writes

● They are on different parts of the disk!

◆ Performance tricks
● Changes made in memory and then logged to disk
● Merge multiple writes to the log with one write
● Use NVRAM (Non-Volatile RAM) to keep the log

58

Log Management
◆ How big is the log?

◆ Observation
● Log what’s needed for crash recovery

◆ Method
● Checkpoint operation: flush the buffer cache to disk
● After a checkpoint, we can truncate log and start again
● Log needs to be big enough to hold changes

◆ Question
● If you only log metadata (file descriptors and directories) and

not data blocks, are there any problems?

59

Summary
◆ File buffer cache

● True LRU is possible
● Simple write back is vulnerable to crashes

◆ Disk block failures and file system recovery tools
● Individual recovery tools
● Top down traversal tools

◆ Consistent updates
● Transactions and ACID properties
● Logging or Journaling file systems

