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Topics
◆ Motivating the Problem: File buffer cache
◆ Possible Solutions
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File Buffer Cache
◆ A large cache in kernel
◆ Read: check if the block is in

● Yes: Copy block to user buffer
● No: Read from storage to buffer 

cache and copy to user buffer
◆ Write: check if the block is in

● Yes: Update it with user buffer
● No: Copy block to buffer cache (may 

replace a block). Write the block.
◆ Usual questions

● What to cache?
● How to size the cache?
● What to prefetch?
● How and what to replace? 
● Which write policies? 

User buffer
User

Buffer
cache

Storage

Kernel
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What to Cache?
◆ For different kinds of blocks

● i-nodes
● Indirect blocks
● Directories
● Data blocks

◆ Issues
● Are all blocks equal?
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Buffer Cache Size
◆ Competition

● Competes with VM and the rest of the system for memory
◆ Two approaches

● Fixed size 
● Variable size

◆ How to adjust buffer cache size?
● Users make decisions
● Working set idea with dynamic adjustments within thresholds

Buffer cache
(90MB)

VM
(110MB)

Buffer cache
(120MB)

VM
(80MB)
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Why in the Kernel?
◆ DMA

● DMA works with “pinned” 
physical memory

◆ Multiple user processes
● Share the buffer cache

◆ Typical replacement strategy
● Global LRU 
● Working set for each process

User1 User2 Userk...

Buffer cache

Storage

DMA
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What to Prefetch?
◆ Optimal

● Prefetch in just enough time to use them
◆ Good news: file accesses have locality 

● Temporal locality
● Spatial locality

◆ Common strategies
● Prefetch next k blocks together
● Discard unreferenced blocks
● Layout consecutive blocks to the same cylinder group 
● Fetch directory and i-nodes together

◆ Advanced strategy
● Prefetch all small files of a directory
● Prefetch beginning portions of large files
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Write Policies
◆ Write through 

● Write to storage immediately
● Cache is consistent
● Simple, but cause more I/Os

◆ Write back 
● Update a block in buffer cache 

and mark it as dirty
write to storage later

● Fast writes, absorbs writes, and 
enables batching

● So, what’s the problem?

User buffer
User

Buffer
cache

Disk

Kernel
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Write Back Complications

◆ Tension
● On crash, all modified data in cache is lost.
● Postpone writes ⇒ better performance but more damage

◆ When to write back
● When a block is evicted 
● When a file is closed 
● On an explicit flush 
● When a time interval elapses (30 seconds in Unix)

◆ Issues
● These options have no guarantees about written data being lost



File System Reliability

• What if disk loses power or machine crashes?
● Some operations in progress may complete
● Some operations in progress may be lost
● Overwrite of a block may be only partially complete

• File system wants durability (as a minimum)
● Data previously stored can be retrieved (maybe after some 

recovery step), regardless of failure
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Multiple Updates

• If multiple updates needed to perform some operations, 
a crash can occur between them
● Moving a file between directories:

• Delete file from old directory
• Add file to new directory

● Create new file
• Allocate space on disk for header, data
• Write new header to disk
• Add the new file to directory

• What if there is a crash in the middle? 

• Problems even with write-through cache
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Storage Reliability Problem

• Single logical file operation can involve updates to 
multiple physical disk blocks
● inode, indirect block, data block, bitmap, …

• At a physical level, operations complete one at a time
● But we want higher level concurrent operations for 

performance

• How do we guarantee consistency regardless of when 
crash occurs?

13
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Approaches
◆ Throw everything away and start over 

● Done for most things (e.g., make again)
● What about your email?

◆ Check, and recover what you can when stuff gets corrupted: 
Reconstruction
◆ Try to fix things after a crash (e.g. “fsck”)
◆ Figure out where you are, make file system consistent

◆ Try not to let stuff get corrupted
◆ Careful ordering to make consistent updates
◆ Copy on Write
◆ Logging and transactions
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Reconstruction: File Recovery Tools
◆ Physical backup (dump) and recovery

● Dump disk block by block to a backup system
● Backup only changed blocks since the last backup 

as an incremental
● Recovery tool is made accordingly

◆ Logical backup (dump) and recovery
● Traverse the logical structure from the root
● Selectively dump what you want to backup
● Verify logical structures as you backup
● Recovery tool selectively move files back

◆ Consistency check (e.g. fsck)
● Start from the root i-node
● Traverse the whole tree and mark reachable files
● Verify the logical structure
● Unreachable blocks are free
● Lots of other consistency checks on superblocks, 

inodes, data blocks etc.

/

u

cos318

man
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Recovery from Disk Block Failures
◆ Boot block

● Create a utility to replace the boot block
● Use a flash memory to duplicate the boot 

block and kernel
◆ Super block

● If there is a duplicate, remake the file 
system

◆ Free block data structure 
● Search all reachable blocks from the root
● Unreachable blocks are free

bitmap

i-node

Indirect Indirect

Data Data Data



20

Approaches
◆ Throw everything away and start over 

● Done for most things (e.g., make again)
● What about your email?

◆ Check, and recover what you can when stuff gets corrupted: 
Reconstruction
◆ Try to fix things after a crash (e.g. “fsck”)
◆ Figure out where you are, make file system consistent

◆ Try to not let stuff get corrupted: 
1. Careful ordering to make consistent updates
2. Copy on Write
3. Logging and transactions
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i-node
“cos318”

Careful Ordering: Write Metadata First
◆ Modify /u/cos318/foo

● Traverse to /u/cos318/

● Allocate data block

● Write pointer into i-node

● Write new data to foo

i-node
“/”

dir
file

i-node
“u”

dir
file

dir
file

i-node
“foo”

Old
data

New
data

Crash Consistent

Crash Consistent

Crash Inconsistent

Crash Consistent

Writing metadata first can cause inconsistency
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i-node
“cos318”

Write Data First
◆ Modify /u/cos318/foo

● Traverse to /u/cos318/

● Allocate data block

● Write new data to foo

● Write pointer into i-node

i-node
“/”

dir
file

i-node
“u”

dir
file

dir
file

i-node
“foo”

Old
data

New
data

Crash Consistent

Crash Consistent

Crash Consistent

Crash Consistent
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1. Consistent Updates: Bottom-Up Order
◆ The general approach is to use a “bottom up” order

● File data blocks, file i-node, directory file, directory i-node, …
◆ What about file buffer cache

● Write back all data blocks
● Update file i-node and write it to disk
● Update directory file and write it to disk
● Update directory i-node and write it to disk (if necessary) 
● Continue until no directory update exists

◆ Solve the write back problem?
● Updates are consistent but leave garbage blocks around
● May need to run fsck to clean up once a while

◆ Ideal approach: consistent update without leaving garbage



Careful Ordering in General

• Sequence operations in a specific order
● Careful design to allow sequence to be interrupted safely

• Post-crash recovery
● Read data structures to see if there were any operations in 

progress
● Clean up/finish as needed

• Approach taken in FAT, FFS (fsck), and many app-
level recovery schemes (e.g., Word)
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Careful ordering

• Pros
● Works with minimal support in the disk drive
● Works for most multi-step operations

• Cons
● Can require time-consuming recovery after a failure
● Difficult to reduce every operation to a safely interruptible 

sequence of writes
● Difficult to achieve consistency when multiple operations 

occur concurrently
● Garbage left around that needs to be collected
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2: Copy-on-Write

• Never update in place
● To update file system, write a new version of the 

blocks/data structures containing the update
● Reuse existing unchanged disk blocks

• Seems expensive. But:
● Updates can be batched
● Almost all disk writes can occur in parallel

• Approach taken in network file server appliances 
(WAFL, ZFS)

31



Copy on Write
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Copy on Write
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Copy on write batch update
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Copy-on-Write Garbage Collection

• For write efficiency, want contiguous sequences of 
free blocks
● Spread across all block groups
● Updates leave dead blocks scattered

• For read efficiency, want data read together to be 
together
● Write anywhere leaves related data scattered

=> Background coalescing of live/dead blocks  
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Copy-on-Write

• Pros
● Consistent behavior regardless of failures
● Fast recovery
● High throughput (best if updates are batched)

• Cons
● Potential for high latency
● Small changes require many writes
● Garbage collection essential for performance

• Updates leave dead blocks scattered, but want contiguous 
free blocks and grouped related data
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3: Logging and Transactions

• Instead of modifying data structures on disk directly, 
write changes to a journal/log
● Intention list: set of changes we intend to make
● Log/Journal is append-only

• Once changes are on log, safe to apply changes to 
data structures on disk
● If there is a crash, recovery can read log to see what 

changes were intended

• Once changes are copied, safe to remove log

37



38

Transactions
◆ Group multiple operations to have “ACID” property

● Atomicity
• Any observed result is as if the atomic set all happened or none 

happened (no partial operations)
● Consistency

• Yields a correct transformation of the state
● Isolation (Serializability)

• Transactions appear to happen one after the other, not 
interleaved

● Durability (Persistency)
• Once it happens (is committed), stays happened

◆ Question
● Do critical sections have ACID property?
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Transactions
◆ Bundle operations into a transaction
◆ Basic idea: Do operations ‘tentatively’. If get to commit, great. 

Otherwise, roll back operations as if transaction never happened

◆ Primitives
● BeginTransaction

• Mark the beginning of the transaction
● Commit (End transaction)

• When transaction is done
● Rollback (Abort transaction)

• Undo all the actions since “Begin transaction.”

◆ Rules
● Transactions can run concurrently
● Rollback can execute anytime
● Sophisticated transaction systems allow nested transactions



Transaction Implementation

• Example: money transfer from account x to account y:

Begin transaction
S  = S - $100
C  =  C + $100

Commit

• Keep “redo” log on disk of all changes in transaction. 
● A log is like a journal, never erased, record of everything 

you’ve done
● Once both changes are on log, transaction is committed.
● Then can “write behind” changes to disk --- if crash after 

commit, replay log to make sure updates get to main disk

40
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Implementation
◆ BeginTransaction

● Start using a “write-ahead” log on disk
● Log all updates

◆ Commit
● Write “commit” at the end of the log
● Then “write-behind” to disk by writing updates to disk
● Clear the log 

◆ Rollback
● Clear the log

◆ Crash recovery
● If there is no “commit” in the log, do nothing
● If there is a “commit,” replay the log and clear the log

◆ Assumptions
● Writing to disk is correct (recall error detection and correction)
● Disk is in a good state before we start
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An Example: Atomic Money Transfer
◆ Move $100 from account S to C (1 thread):

BeginTransaction
S = S - $100;
C = C + $100;

Commit

◆ Steps:
1: Write new value of S to log
2: Write new value of C to log
3: Write commit
4: Write S to disk
5: Write C to disk
6: Clear the log and reclaim space

◆ Possible crashes
● After 1
● After 2
● After 3 before 4 and 5

C = 110
S = 700

C = 10
S = 800
C = 110
S = 700

S=700 C=110 Commit



Transaction implementation (cont’d)

S=700   C=110   commit

1. Write new value of S to log
2. Write new value of C to log 
3. Write commit 
4. Write S to disk
5. Write C to disk
6. Reclaim space on log

! What if we crash after 1?
! No commit, nothing on disk, so just 

ignore changes
! What if we crash after 2?  Ditto
! What if we crash after 3 before 4 or 5? 

! Commit written to log, so replay those 
changes back to disk
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! What if we crash while we are writing 
“commit”?
! As with concurrency, we need some 

primitive atomic operation or else can’t 
build anything. (e.g., writing a single sector 
on disk is atomic)
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Revisit The Implementation
◆ BeginTransaction

● Start using a “write-ahead” log on disk
● Log all updates

◆ Commit
● Write “commit” at the end of the log
● Single disk write to make transaction durable
● Then “write-behind” to disk by writing updates to disk
● Clear the log 

◆ Rollback
● Clear the log

◆ Crash recovery
● If there is no “commit” in the log, do nothing
● If there is “commit,” replay the log and clear the log

◆ Question: What if there is a crash during the recovery?



Performance

• Log written sequentially
● Often kept in flash storage

• Asynchronous write back
● Any order as long as all changes are logged before commit, 

and all write backs occur after commit

• Can process multiple transactions
● Transaction ID in each log entry
● Transaction completed iff its commit record is in log
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Transaction Isolation (Serializability)

Process A

move file from dir x to y
mv x/file y/

Process B

grep across x and y
grep x/* y/* > log

What if grep starts after changes are logged, but before 
commit?
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Transaction isolation

Process A

Lock x, y
move file from x to y

mv x/file y/

Commit and release x,y

Process B

Lock x, y, log
grep across x and y

grep x/* y/* > log

Commit and release x, y, log

Grep occurs either before or after move

52
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Two-Phase Locking for Transactions

◆ First phase
● Acquire all locks (avoids deadlock concerns)

◆ Second phase
● All unlocks happen at commit operation (no individual release 

operations)
● Rollback operation: always undo the changes first and then 

release all locks

Thread B can’t see any of A’s changes until A commits and releases 
locks. This provides serializability. 



Serializability

• With two phase locking and redo logging, transactions 
appear to occur in a sequential order (serializability)
● Either: grep then move or move then grep

• Other implementations can also provide serializability
● Optimistic concurrency control: abort any transaction that 

would conflict with serializability

54



56

Use Transactions in File Systems
◆ Make a file operation a transaction

● Create a file
● Move a file
● Write a chunk of data 
● …

◆ Make arbitrary number of file operations a transaction
● Make sure logging is idempotent
● Recovery by replaying the log
● Called “logging file system” or “journaling file system”
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Performance Issue with Logging
◆ For every disk write, we now have two disk writes

● They are on different parts of the disk!

◆ Performance tricks
● Changes made in memory and then logged to disk
● Merge multiple writes to the log with one write
● Use NVRAM (Non-Volatile RAM) to keep the log
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Log Management
◆ How big is the log? 

◆ Observation
● Log what’s needed for crash recovery

◆ Method
● Checkpoint operation: flush the buffer cache to disk
● After a checkpoint, we can truncate log and start again
● Log needs to be big enough to hold changes

◆ Question
● If you only log metadata (file descriptors and directories) and 

not data blocks, are there any problems?
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Summary
◆ File buffer cache

● True LRU is possible
● Simple write back is vulnerable to crashes

◆ Disk block failures and file system recovery tools
● Individual recovery tools
● Top down traversal tools

◆ Consistent updates
● Transactions and ACID properties
● Logging or Journaling file systems


