
COS 318: Operating Systems

File Structure

Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

http://www.cs.princeton.edu/courses/cos318/

Where Are We?
• Covered:

● Management of CPU & concurrency
● Management of main memory & virtual memory
● Device drivers and storage devices

• Currently --- File Systems
● This lecture: File Structure

• Then:
• Naming and directories
• Efficiency and performance
• Reliability and protection

The File System Abstraction

Physical Reality File System Abstraction

block oriented byte oriented (char stream)

physical sector #’s named files

no protection users protected from
each other

data might be corrupted robust to machine failures
if machine crashes

• Open, close, read, write … named files, arranged in folders
or directories

4

File System

◆ Naming
● File name and directory

◆ File access
● Read, write, other operations

◆ Buffer cache
● Reduce client/server disk I/Os

◆ Disk allocation
◆ Layout, mapping files to blocks

◆ Security, protection, reliability, durability

◆ Management tools

File naming

File access

Buffer cache

Disk allocation

Disk Drivers

M
an

ag
em

en
t

2

Topics

◆ File system structure
◆ Disk allocation and i-nodes
◆ Directory and link implementations
◆ Physical layout for performance

Typical File Attributes

• Name
• Type – needed for systems that support different types
• Location – pointer to file location on device.
• Size – current file size.
• Protection – controls who can read, write, execute
• Time, date, and user identification – data for protection,

security, and usage monitoring

2

Master Boot Record

• Starts at first sector of disk

• End of record lists the partitions on the disk
● Every partition can have a different file system

• Upon boot:
● BIOS reads in and executes MBR
● Finds active disk partition from MBR
● First block of active partition (boot block) is loaded and executed
● That loads in the OS from that partition

• What does partition and file layout on it look like?

Typical Layout of a Disk Partition

◆ Boot block
● Code to load and boot OS

◆ Super-block defines a file system
● File system info: type, no of blocks, ...
● File metadata area
● Information about / ptr to free blocks
● Location of descriptor of root directory

◆ File metadata
● Each descriptor describes a file

◆ Directories
● Directory data (directory and file names)

◆ File data
● Data blocks

3

File metadata
(i-nodes in Unix)

Superblock

Directory data

File data

Boot block

File Types – Name, Extension

Executable exe, com, bin or
none

ready-to-run machine-
language program

Object obj, o complied, machine
language, not linked

Source code c, p, pas, 177,
asm, a

source code in various
languages

Batch bat, sh commands to the
command interpreter

Text txt, doc textual data documents

Word processor wp, tex, rrf, etc. various word-processor
formats

Library lib, a libraries of routines

Print or view ps, dvi, gif ASCII or binary file

Archive arc, zip, tar related files grouped
into one file, sometimes
compressed.

File Type Usual extension Function

Typical File Operations

• Create
• Write
• Read
• Reposition within file – file seek
• Delete
• Truncate
• Open(Fi) – search the directory structure on disk for

entry Fi, and move the content of entry to memory.
• Close (Fi) – move the content of entry Fi in memory to

directory structure on disk.

5

Open A File: Open(fd, name, access)

◆ Various checking (directory and file name lookup, authenticate)
◆ Copy the file descriptors into the in-memory data structure
◆ Create an entry in the open file table (system wide)
◆ Create an entry in PCB
◆ Return user a pointer to “file descriptor”

Open-file table
(system-wide)

File
metadata

File system
info

Directories

File data

File
descriptors
(Metadata)

Process
control
block

...

Open
file

pointer
array

Translating from user to system view

• User wants to read 10 bytes from file starting at byte 2?
● Seek byte 2, fetch the block, read 10 bytes

• User wants to write 10 bytes to file starting at byte 2?
● Seek byte 2, fetch the block, write 10 bytes, write out block

• Everything inside file system is in whole size blocks
● Even getc and putc buffers 4096 bytes

• From now on, file is collection of blocks.

File usage patterns

• How do users access files?
● Sequential: bytes read in order
● “Random”: read/write element out of middle of file
● Content-based access: find me next byte starting with “COS318”

• How are files used?
● Most files are small
● Large files use up most of the disk space
● Most transfers are small
● Large files account for most of the bytes transferred

• Bad news
● Need everything to be efficient

File system design constraints

• For small files:
● Small enough blocks for storage efficiency
● Files used together should be stored together

• For large files:
● Contiguous allocation for sequential access
● Efficient lookup for random access

• May not know at file creation whether file will become
small or large

File system design

• Data structures
● Directories: file name -> file metadata

• Store directories as files
● File metadata: used to find file data blocks of the file
● Free map: list of free disk blocks

• How do we organize these data structures?

Data structures for disk management

• A file header for each file (part of the file meta-data)

• A data structure to track free space on disk
● Bit map

• 1 bit per block (sector)
• blocks numbered in cylinder-major order, why?

● Linked list
● Others?

• What about allocation for the blocks associated with a file?

7

Files: Contiguous Allocation
◆ Allocate contiguous blocks of

storage
● Bitmap: find N contiguous 0’s
● Linked list: find a region (size >= N)

◆ File metadata
● First block in file
● Number of blocks

◆ Pros
● Fast sequential access
● Easy random access

◆ Cons
● External fragmentation

(what if file C needs 4 blocks)
● Hard to grow files

3

File A File B

8

Linked Files

◆ File structure (Alto)
● File metadata points to 1st block

on storage
● A block points to the next
● Last block has a NULL pointer

◆ Pros
● Can grow files dynamically
● File data tracked similarly to free

list of blocks
● Doesn’t waste space

◆ Cons
● Random access: bad
● Unreliable: losing a block means

losing the rest

File header

null

. . .

Linked files (cont’d)

8

File Allocation Table (FAT)
• Idea is to keep the linked list metadata

(pointers) in memory, rather than on disk
• Allocation table at beginning of each volume

◆ N entries for N blocks
◆ Want to keep it in memory

• File structure (MS-DOS)
● A file is a linked list of blocks
● File metadata points to first block of file
● The entry of first block points to next, …

• Pros
● Simple

• Cons
● Random access: still not good
● Wastes space - table for each file

expensive to keep in memory

217 619

399

foo 217

EOF

FAT Allocation Table

0

399

619

11

DEMOS (Cray-1)

◆ Idea
● Try contiguous allocation
● Allow non-contiguous

◆ File structure
● Small file metadata has 10 (base,size) pointers
● Big file has 10 indirect pointers

◆ Pros & Cons
● Can grow
● Fragmentation

File metadata

size9

size1
size0

size9

size1
size0

size9

size1
size0

size9

size1
size0

Single-level Indexed File

• User declares max size
• File header holds array of pointers

to disk blocks

• Pros:
● Can grow up to a limit
● Random access is fast
● No external fragmentation

• Cons:
● Clumsy to grow beyond limit
● Still lots of seeks

File header
Disk
blocks

Single-level indexed files (cont’d)

Multi-level Indexed Files

!

outer-index

index table file

12

Hybrid Multi-level Indexed Files (Unix)

◆ 13 Pointers in a header
● 10 direct pointers
● 11: 1-level indirect
● 12: 2-level indirect
● 13: 3-level indirect

◆ Pros & Cons
● In favor of small files
● Can grow
● Limit is 16G
● Can have lots of seeking

1
2

data

data
...

11
12
13

data
...

... data
...

... data
...

...

13

Original Unix i-node

◆ Mode: file type, protection bits, setuid, setgid bits
◆ Link count: no. of directory entries pointing to this file
◆ Uid: uid of the file owner
◆ Gid: gid of the file owner
◆ File size
◆ Times (access, modify, change)

◆ 10 pointers to data blocks
◆ Single indirect pointer
◆ Double indirect pointer
◆ Triple indirect pointer

14

Extents
◆ An extent is a variable number of

blocks
◆ Main idea

● A file is a number of extents
● XFS uses 8Kbyte blocks
● Max extent size is 2M blocks

◆ Index nodes need to have
● Block offset
● Length
● Starting block

• Microsoft NTFS, Linux EXT4, …
◆ Pros: little metadata, fast seq

access, can grow over time, less
fragmentation

◆ Cons: external fragmentation still
problem

Block offset
length

Starting block

. . .

15

Naming Files

Can name files via:
◆ Index (i-node number): Not easy for users to specify
◆ Text name: Need to map it to index
◆ Icon: Need to map it to index or to text and then to index

◆ Directories
◆ Table of file name, file index pairs
◆ Map name to file index (where to find the header)
◆ A directory is itself stored as a file

• Bootstrapping: Where do you start looking?
● Root directory
● inode #2 on the system
● 0 and 1 used for other purposes

• Special names:
● Root directory: “/” (bootstrap name system for users)
● Current directory: “.”
● Parent directory: “..”
● user’s home directory: “~”

• Using the given names, only need two operations to
navigate the entire name space:
● cd ‘name’: move into (change context to) directory “name”
● ls : enumerate all names in current directory (context)

Naming Tricks

16

Directory Organization Examples

◆ Flat (CP/M)
● All files are in one directory

◆ Hierarchical (Unix)
● /u/cos318/foo
● Directory is stored in a file containing (name, i-node) pairs
● The name can be either a file or a directory

◆ Hierarchical (Windows)
● C:\windows\temp\foo
● File extensions have meaning (unlike in Unix). Use the

extension to indicate whether the entry is a directory

17

Mapping File Names to i-nodes

Need to support the following types of operations:

◆ Create/delete
● Create/delete a directory

◆ Open/close
● Open/close a directory for read and write

◆ Link/unlink
● Link/unlink a file

◆ Rename
● Rename the directory

18

Linear List

◆ Method
● <FileName, i-node> pairs are

linearly stored in a file
● Create a file

• Append <FileName, i-node>
● Delete a file

• Search for FileName
• Remove its pair from the

directory
• Compact by moving the rest

◆ Pros
● Space efficient

◆ Cons
● Linear search
● Need to deal with fragmentation

/u/jps
foo bar …
veryLongFileName

<foo,1234> <bar,
1235> … <very
LongFileName,
4567>

19

Tree Data Structure

◆ Method
● Store <fileName, i-node> a tree data structure such as B-tree
● Create/delete/search in the tree data structure

◆ Pros
● Good for a large number of files

◆ Cons
● Inefficient for a small number of files
● More space
● Complex

…

20

Hashing

◆ Method
● Use a hash table to map

FileName to i-node
● Space for name and metadata

is variable sized
● Create/delete will trigger space

allocation and free
◆ Pros

● Fast searching and relatively
simple

◆ Cons
● Not as efficient as trees for very

large directory (wasting space
for the hash table)

…

foo
bar

1234
1235

foobar 4567

21

Number of I/O operations

◆ I/Os to access a byte of /u/cos318/foo
● Read the i-node and first data block of “/”
● Read the i-node and first data block of “u”
● Read the i-node and first data block of “cos318”
● Read the i-node and first data block of “foo”

◆ I/Os to write a file
● Read the i-node of the directory and the directory file (as

above)
● Read or create the i-node of the file
● Read or create the file itself
● Write back the directory and the file

◆ Too many I/Os to traverse the directory
● Solution is to use Current Working Directory (e.g. ./foo)

23

Hard Links

◆ Approach
● A link to a file with the same i-node
ln source target

● i.e. the name points to the same i-node
as that of the file being linked to

● Delete may or may not remove the target
depending on whether it is the last one
(link reference count)

◆ Main issue with hard links?

Directory A

i-node

Directory B

Ref=2

23

Symbolic Links

◆ Approach
● A symbolic link is a pointer to a file
● Use a new i-node for the link
ln –s source target

● Carries pathname of original file

◆ Main issue with symbolic links?
◆ Performance?
◆ What if you delete the link?
◆ What if you delete the original file?

Directory B

Link

Directory A

24

Original Unix File System Disk Layout

◆ Simple disk layout
● Block size is sector size (512 bytes)
● i-nodes are on outermost cylinders
● Data blocks are on inner cylinders
● Use linked list for free blocks

◆ Issues
● Index is large due to small block size
● Fixed max number of files
● i-nodes far from data blocks
● i-nodes for directory not close together
● Consecutive blocks of file can be anywhere on disk
● Poor bandwidth (20Kbytes/sec even for sequential access!)

i-node array

25

BSD FFS (Fast File System)

◆ Use a larger block size: 4KB or 8KB
● Allow large blocks to be chopped into

fragments, used for small files and pieces at
ends of files

◆ Use bitmap instead of a free list
● Try to allocate contiguously

foo

bar

26

FFS Disk Layout

◆ i-nodes are grouped together
● A portion of the i-node array on each cylinder
● In same cylinder group as data for the files
● 10% reserved disk space, to keep room

◆ Do you ever read i-nodes without
reading any file blocks?
● 4 times more often than reading together
● examples: ls, make

◆ Overcome rotational delays
● Skip sector positioning to avoid the context

switch delay
● Read ahead: read next block right after the

first

i-node subarray

Block Group 0

Block Group 1

Block Group 2

Free Space Bitmap Inodes

Data Blocks for files in directories /a, /d, and /b/c

Inodes

Free Space Bitm
ap

Data Blocks for files in directories /b, /a/g, /z

Data Blocks for files in dire
ct

or
ie

s
/d

/q
, /

c,
 a

nd
 /

a/
p

In
od

es
Free Space B

i tm
ap

FFS block groups for better locality

27

What Has FFS Achieved?

◆ Performance improvements
● 20-40% of disk bandwidth for large files (10-20x original)
● Better small file performance (why?)

◆ We can do better
● Extent based instead of block based

• Use a pointer and size for all contiguous blocks (XFS, Veritas
file system, etc)

● Synchronous metadata writes hurt small file performance

28

Summary

◆ File system structure
● Boot block, super block, file metadata, file data

◆ File metadata
● Consider efficiency, space and fragmentation

◆ Directories
● Consider the number of files

◆ Links
● Soft vs. hard

◆ Physical layout
● Where to put metadata and data

