
COS 318: Operating Systems

Virtual Memory Design Issues:
Paging and Caching

2

Virtual Memory: Paging and Caching

u Need mechanisms for paging between memory and
disk

u Need algorithms for managing physical memory as a
cache

3

Today’s Topics

u Paging mechanism
u Page replacement algorithms
u When the cache doesn’t work

4

Virtual Memory Paging

u Simple world
l Load entire process into memory. Run it. Exit.

u Problems
l Slow (especially with big processes)
l Wasteful of space (doesn’t use all of its memory all the time)

u Solution
l Demand paging: only bring in pages actually used
l Paging: goal is only keep frequently used pages in memory

u Mechanism:
l Virtual memory maps some to physical pages, some to disk

5

VM Paging Steps

Steps
u Memory reference

(may cause a TLB miss)
u TLB entry invalid triggers a page

fault and VM handler takes over
u Move page from disk to memory
u Update TLB entry w/ pp#, valid bit
u Restart the instruction
u Memory reference again

...
subl $20 %esp
movl 8(%esp), %eax... vp#

v vp#
i vp#
v vp#

v vp#

TLB

pp#
pp#
dp#
pp#

pp#

...

v

VM
system

pp#v

Reference

fa
ul

t

Restart

6

Virtual Memory Issues

u What to page in?
l Just the faulting page or more?
l Want to know the future…

u What to replace?
l Cache (main memory) too small. Which page to replace?
l Want to know the future...

7

How Does Page Fault Work?

u User program should not be aware of the page fault
u Fault may have happened in the middle of the

instruction!
u Can we skip the faulting instruction?
u Is a faulting instruction always restartable?

.

.

.

subl $20 %esp
movl 8(%esp), %eax

.

.

.

VM fault handler()
{
Save states
.
.
.

iret
}

8

What to Page In?

u Page in the faulting page
l Simplest, but each “page in” has substantial overhead

u Page in more pages each time (prefetch)
l May reduce page faults if the additional pages are used
l Waste space and time if they are not used
l Real systems do some kind of prefetching

u Applications control what to page in
l Some systems support for user-controlled prefetching
l But, applications do not always know

9

VM Page Replacement
u Things are not always available when you want them

l It is possible that no unused page frame is available
l VM needs to do page replacement

u On a page fault
l If there is an unused frame, get it
l If no unused page frame available,

• Choose a used page frame
• If it has been modified, write it to disk*
• Invalidate its current PTE and TLB entry

l Load the new page from disk
l Update the faulting PTE and remove its TLB entry
l Restart the faulting instruction

* If page to be replaced is shared, find all page table entries that refer to it

Page
Replacement

Backing Store

u Swap space
l When process is created, allocate swap space for it on disk
l Need to load or copy executables to swap space
l Need to consider swap space growth

u Can you use the executable file as swap space?

10

Cache replacement policy

u On a cache miss, how do we choose which entry to
replace?
l Assuming the new entry is more likely to be used in the near

future
l In direct mapped caches, not an issue

u Policy goal: reduce cache misses
l Improve expected case performance
l Also: reduce likelihood of very poor performance

16

Which “Used” Page Frame To Replace?

u Random
u Optimal or MIN algorithm
u NRU (Not Recently Used)
u FIFO (First-In-First-Out)
u FIFO with second chance
u Clock (with second chance)
u Not Recently Used
u LRU (Least Recently Used)
u NFU (Not Frequently Used)
u Aging (approximate LRU)
u Working Set
u WSClock

17

Optimal or MIN

u Algorithm:
l Replace the page that won’t be

used for the longest time
(Know all references in the future)

u Example
l Reference string:
l 4 page frames
l 6 faults

u Pros
l Optimal solution and can be used as an off-line analysis

method
u Cons

l No on-line implementation

1 2 3 4 1 2 5 1 2 3 4 5

19

Bookkeeping Methods in TLB and PT

u Important bits for paging
l Reference: Set when referencing a location in the page (really

on TLB miss; can clear every so often, e.g. on clock interrupt)
l Modify: Set when writing to a location in the page

offset

Virtual address

...

PPage# ...

PPage# ...

PPage# …

PPage # offset

VPage #

TLB
Hit

Miss Page Table
VPage#
VPage#

VPage#

MR

20

Not Recently Used (NRU)
u Algorithm

l Randomly pick a page from one of the following sets (in this order)
• Not referenced and not modified
• Not referenced and modified
• Referenced and not modified
• Referenced and modified

l Clear reference bits
u Example

l 4 page frames
l Reference string
l 8 page faults

u Pros
l Implementable

u Cons
l Require scanning through reference bits and modified bits

1 2 3 4 1 2 5 1 2 3 4 5

21

First-In-First-Out (FIFO)

u Algorithm
l Throw out the oldest page

u Example
l 4 page frames
l Reference string
l 10 page faults

u Pros
l Low-overhead implementation

u Cons
l May replace the heavily used pages
l Worst case is program striding through data larger than memory

5 3 4 7 9 11 2 1 15Page
out

Recently
loaded

1 2 3 4 1 2 5 1 2 3 4 5

22

More Frames ® Fewer Page Faults?

u Consider the following with 4 page frames
l Algorithm: FIFO replacement
l Reference string:
l 10 page faults

u Same string with 3 page frames
l Algorithm: FIFO replacement
l Reference string:
l 9 page faults!

u This is so called “Belady’s anomaly” (Belady,
Nelson, Shedler 1969)

1 2 3 4 1 2 5 1 2 3 4 5

1 2 3 4 1 2 5 1 2 3 4 5

23

FIFO with 2nd Chance

u Address the problem with FIFO
l Heavily referenced pages get replaced due to lack of relationship between

when pages come in and how heavily they are referenced

u Give pages that are referenced a second chance

24

FIFO with 2nd Chance

u Algorithm
l Check the reference-bit of the oldest page

• If it is 0, then replace page (write back if dirty, don’t If clean)
• If it is 1, give it a second chance: clear the reference bit, put the page at front

of list, updating its “load time” to the current time, and continue searching
l Looking for an old page not referenced in current clock interval
l If don’t find one (all pages referenced in current interval) come back to

first-checked page again (its R bit is now 0). Degenerates to pure FIFO.
u Example

l 4 page frames
l 8 page faults

u Pros
l Simple to implement

u Cons
l The worst case may take a long time

1 2 3 4 1 2 5 1 2 3 4 5

25

Clock
u FIFO Clock algorithm

l Arrange physical pages in circle
l Clock hand points to the oldest page
l On a page fault, follow the hand to

inspect pages
u Clock with Second Chance

l If the reference bit is 1, set it to 0 and
advance the hand

l If the reference bit is 0, use it for
replacement

u Compare with FIFO w/2nd chance
l Q: What’s the difference?

u What if memory is very large
l Take a long time to go around?

Oldest page

Nth chance: Not Recently Used

u Periodically sweep through all page frames
u Instead of one referenced bit per page, keep an integer

l notInUseSince: number of sweeps since last use

if (page is used) {
notInUseSince = 0;

} else if (notInUseSince < N) {
notInUseSince++;

} else {
replace page;

}

Implementation note

u Clock and Nth Chance can run synchronously
l In page fault handler, run algorithm to find next page to evict
l Might require writing changes back to disk first

u Or asynchronously
l A thread maintains a pool of recently unused, clean pages

• Find recently unused dirty pages, write mods back to disk
• Find recently unused clean pages, mark invalid and move to pool

l On page fault, check if requested page is in pool
l If not, evict that page

28

Least Recently Used

u Algorithm
l Replace page that hasn’t been used for the longest time

• Order the pages by time of reference
• Needs a timestamp for every referenced page

u Example
l 4 page frames
l Reference string:
l 8 page faults

u Pros
l Good to approximate MIN

u Q: Cons?

5 3 4 7 9 11 2 1 15 Recently
loaded

Least
Recently
used

1 2 3 4 1 2 5 1 2 3 4 5

29

Approximation of LRU
u Use CPU ticks

l For each memory reference, store the ticks in its PTE
l Find the page with minimal ticks value to replace

u Use a smaller counter
Most recently used Least recently used

N categories
Pages in order of last reference

LRU

Crude
LRU 2 categories

Pages referenced since
the last page fault

Pages not referenced
since the last page fault

8-bit
count 256 categories254 255

30

Not Frequently Used (NFU)
u Software counter associated with every page
u Algorithm

l At every clock interrupt, scan all pages, and for each page add
the R bit value to its counter

l At page fault, pick the page with the smallest counter to replace
u Problem

l Never forgets anything: pages used a lot in the past will have
higher counter values than pages used recently

31

Not Frequently Used (NFU) with Aging
u Algorithm

l At every clock interrupt, shift (right) reference bits into counters
l At page fault, pick the page with the smallest counter to replace

u Old example
l 4 page frames
l Reference string:
l 8 page faults

u Main difference between NFU and LRU?
l NFU has a short history (counter length)
l NFU cannot distinguish reference times within a clock interval

u How many bits are enough?
l In practice 8 bits are quite good (8*20ms is a lot of history)

00000000
00000000

10000000
00000000

10000000
00000000

11000000
00000000

01000000
10000000

11100000
00000000

10100000
01000000

01110000
10000000

01010000
10100000

00111000
01000000

1 2 3 4 1 2 5 1 2 3 4 5

32

Program Behavior (Denning 1968)

u 80/20 rule
l > 80% memory references are

within <20% of memory space
l > 80% memory references are

made by < 20% of code
u Spatial locality

l Neighbors are likely to be accessed
u Temporal locality

l The same page is likely to be
accessed again in the near future

Pages in memory

Pa

ge
 fa

ul
ts

33

Working Set
u Main idea (Denning 1968, 1970)

l Define a working set as the set of pages in the most recent K
page references

l Keep the working set in memory will reduce page faults
significantly

u Approximate working set
l The set of pages of a process used in the last T seconds

u An algorithm
l On a page fault, scan through all pages of the process
l If the reference bit is 1, record the current time as “time of last

use” for the page
l If the reference bit is 0, check the “time of last use,”

• If the page has not been used within T, replace the page
• Otherwise, go to the next

l If all pages used within T, pick the oldest page that has R=0.
Else if no R=0 pages then pick at random.

34

WSClock

u Follow the clock hand
u If the reference bit is 1

l Set reference bit to 0
l Set the current time for the page
l Advance the clock hand

u If the reference bit is 0, check “time of last use”
l If the page has been used within d, go to the next
l If the page has not been used within d and modify bit is 1

• Schedule the page for page out and go to the next
l If the page has not been used within d and modify bit is 0

• Replace this page

35

Replacement Algorithms
u The algorithms

l Random
l Optimal or MIN algorithm
l NRU (Not Recently Used)
l FIFO (First-In-First-Out)
l FIFO with second chance
l Clock (with second chance)

u Which are your top two?

• Not Recently Used
• LRU (Least Recently Used)
• NFU (Not Frequently Used)
• Aging (approximate LRU)
• Working Set
• WSClock

Thrashing

u Thrashing
l Paging in and out all the time, I/O devices fully utilized
l Processes block, waiting for pages to be fetched from disk

u Reasons
l Process requires more physical memory than it has
l Process does not reuse memory well
l Process reuses memory, but what it needs does not fit
l Too many processes, even though they individually fit

u Solution: working set
l Pages referenced (by a process, or by all) in last T seconds
l Really, the pages that need to cached to get good hit rate

36

Making the Best of a Bad Situation

u Single process thrashing?
l If process does not fit or does not reuse memory, OS can do

nothing except contain damage.

u System thrashing?
l If thrashing because of the sum of several processes, adapt:

• Figure out how much memory each process needs
• Change scheduling priorities to run processes in groups whose

memory needs can be satisfied (shedding load)
• If new processes try to start, can refuse (admission control)

38

Fitting Working Set in Memory
u Maintain two groups of processes

l Active: working set loaded
l Inactive: working set intentionally not loaded

u Two schedulers
l A short-term scheduler schedules active processes
l A long-term scheduler decides which are active and which

inactive, such that (combined) active working sets fit in memory
u A key design point

l How to decide which processes should be inactive
l Typical method is to use a threshold on waiting time

Working Set: Global vs. Local Page Allocation

u The simplest is global allocation only
l Pros: Pool sizes are adaptable
l Cons: Too adaptable, little isolation (example?)

u A balanced allocation strategy
l Each process has its own pool of pages
l Paging allocates from its own pool and replaces

from its own working set
l Use a “slow” mechanism to change the

allocations to each pool while providing isolation
u Design questions:

l What is “slow?”
l How big is each pool?
l When to migrate?

User 1 User 2

?

What about Using Memory for I/O?

u Explicit read/write system calls
l Data copied to user process using system call
l Application operates on data
l Data copied back to kernel using system call

u Memory-mapped files
l Open file as a memory segment
l Program uses load/store instructions on segment memory,

implicitly operating on the file
l Page fault if portion of file is not yet in memory
l Kernel brings missing blocks into memory, restarts process

Advantages to memory-mapped Files

u Programming simplicity

u Efficient for large files
l Operate directly on file, instead of copy in/copy out

u Zero-copy I/O
l Data brought from disk directly into page frame. No copies in

kernel

u Pipelining
l Process can start working before all the pages are populated

u Inter-process communication
l Shared memory segment vs. temporary file

Memory-mapped Files and Demand-Paged VM

u Can go further in unifying memory management across
file buffer and process memory

u Every process segment is backed by a file on disk
l Code segment -> code portion of executable
l Data, heap, stack segments -> temp files
l Shared libraries -> code file and temp data file
l Memory-mapped file segments -> memory-mapped files
l When process ends, delete temp files

45

Address Space in Unix
u Stack
u Data

l Un-initialized: BSS (Block Started by
Symbol)

l Initialized
l brk(addr) to grow or shrink

u Text: read-only
u Mapped files

l Map a file in memory
l mmap(addr, len, prot, flags, fd, offset)
l unmap(addr, len)

Stack

BSS
Data
Text

Address space

Mapped
file

46

Virtual Memory in BSD4
u Physical memory partition

l Core map (pinned): everything about page frames
l Kernel (pinned): the rest of the kernel memory
l Frames: for user processes

u Page replacement
l Run page daemon until there are enough free pages
l Early BSD used the basic Clock (FIFO with 2nd chance)
l Later BSD used Two-handed Clock algorithm

• Second hand runs ahead, writing dirty pages back so there are
enough clean pages

l Swapper runs if page daemon can’t get enough free pages
• Looks for processes idling for 20 seconds or more
• Check when a process should be swapped in

47

Virtual Memory in Linux
u Linux address space for 32-bit machines

l 3GB user space, 1GB kernel (invisible at user level)

u Backing store
l Text segment uses executable binary file as backing storage
l Other segments get backing storage on demand

u Copy-on-write for forking processes

u Multi-level paging
l Directory, middle (nil for Pentium), page, offset
l Kernel is pinned

u Replacement
l Keep certain number of pages free
l Clock algorithm on paging cache and file buffer cache
l Clock algorithm on unused shared pages
l Modified Clock on memory of user processes

48

Address Space in Windows 2K/XP
u Win2k user address space

l Upper 2GB for kernel (shared)
l Lower 2GB – 256MB are for user code and

data (Advanced server uses 3GB instead)
l The 256MB contains system data (counters

and stats) for user to read
l 64KB guard at both ends

u Virtual pages
l Page size

• 4KB for x86
• 8 or 16KB for IA64

l States
• Free: not in use and cause a fault
• Committed: mapped and in use
• Reserved: not mapped but allocated

guard

guard

System data 2GB

4GB

0

Page table

49

Backing Store in Windows 2K/XP
u Backing store allocation

l Win2k delays backing store page assignments until paging out
l There are up to 16 paging files, each with initial and max sizes

u Memory mapped files
l Delayed write back
l Multiple processes can share mapped files w/ different

accesses
l Implement copy-on-write

50

Paging in Windows 2K/XP
u Each process has a working set with

l Min size with initial value of 20-50 pages
l Max size with initial value of 45-345 pages

u On a page fault
l If working set < min, add a page to the working set
l If working set > max, replace a page from the working set

u If a process has a lot of paging activities, increase its max
u Working set manager maintains a large number of free pages

l In the order of process size and idle time
l If working set < min, do nothing
l Otherwise, page out the pages with highest “non-reference” counters in a

working set for uniprocessors
l Page out the oldest pages in a working set for multiprocessors

52

Summary

u VM paging
l Page fault handler
l What to page in
l What to page out

u LRU is good but difficult to implement
u Clock (FIFO with 2nd hand) is considered a good

practical solution
u Working set concept is important

