
COS 318: Operating Systems

Virtual Memory Design Issues:
Address Translation

3

Virtual Memory Design Issues

Any real design must take positions on or have solutions to:

u Protection granularity

u Enabling memory sharing
l Code, libraries, communication

u Flexibility and growth/shrinking of processes

u Efficiency
l Translation efficiency (TLB as cache)
l Access efficiency

• Access time = h × memory access time + (1 - h) × disk access time
• E.g. Suppose memory access time = 100ns, disk access time = 10ms
• If h = 90%, VM access time is 1ms!

u Process forking and copy on write

4

Copy on Write

u Idea of Copy-on-Write
l Child process inherits copy of parent’s address space on fork
l But don’t really want to make a copy of all data upon fork
l Would like to share as far as possible and make own copy

only “on-demand”, i.e. upon a write

u A way to do this is to protect data as read-only in both parent
and child on fork

l When a write is done by either, a protection fault occurs and a copy
is made

Recall Address translation: Base and Bound

Base

Bound

Physical
Memory

Processor’s View Implementation

Virtual
Address

Virtual
Memory

Physical
Address

Base

Base+
Bound

Raise
Exception

Processor

Virtual
Address

Processor

◆ Pros: Simple, fast, cheap, safe, can relocate
◆ Cons: very coarse-grained protection (all or nothing)

● Can’t keep program from accidentally overwriting its own code
● Can’t share subsets of code/data with other processes (all or nothing)
● Can’t grow stack/heap as needed (stop program, change reg, …)

Base and Bound
u Protection granularity: Entire process space (code+data)

l Can’t keep program from accidentally overwriting its own code
u Sharing

l Can’t share subsets of code/data with other processes (all or nothing)

u Growth/shrinking of processes
l Can’t grow stack/heap as needed (stop program, change reg, …)

u Efficiency
l Translation: fast (simple and cheap)
l Access

• External fragmentation leads to inefficient use of physical memory and hence
high miss rates

u Process forking and copy on write
l Protection granularity is entire process space: no benefit from copy on write

Segmentation

u A segment is a contiguous region of virtual memory
u Every process has a segment table (in hardware)

l Entry in table per segment

u Segment can be located anywhere in physical memory
l Each segment has: start, length, access permission

u Protection is at granularity of segments

Segmentation

Base Bound Access

Read

R/W

R/W

R/W

Segment O!set

Raise
Exception

Physical
Memory

ProcessRU·V View Implementation

Virtual
Address

Virtual
Memory

Physical Address

Base 3

Base+
Bound 3

Base 0

Base+
Bound 0

Base 1

Base+
Bound 1

Base 2

Base+
Bound 2

Processor
Virtual

Address
Segment Table

Processor

Code

Data

Heap

Stack

Stack

Data

Code

Heap• Segments contiguous, but gaps in VM between them
• Segment table small, so stored on-CPU
• Access control on per-segment basis

Segmentation
u Protection granularity: A (user-defined) segment

l Protects code separately from data
u Sharing

l Processes can share segments: Same start, length, same/different access
permissions

u Growth/shrinking of processes
l Can grow segments independently, may need to relocate

u Efficiency
l Translation: fast (few segments so table can be in hardware)
l Access

• Better than base+bound, but still external fragmentation due to holes

u Process forking and copy on write
l Can do on a segment granularity: copy entire segment on first write to it

Segments Enable Copy-on-Write

u To an extent …
l Copy segment table into child, not entire address space
l Mark all parent and child segments read-only
l Start child process; return to parent
l If child or parent writes to a segment (e.g. stack, heap)

• Trap into kernel
• At this point, make a copy of the data

u But segmentation has other problems too:
l Complex memory management due to external fragmentation

• Need to find chunk of particular size
• Wasted space between chunks/segments
• May need to rearrange memory from time to time to make room

for new segment or to grow segment

Paging
u Manage memory in fixed size units, or pages
u Finding a free page is easy

l Effectively a bitmap allocation: 0011111100000001100
l Every bit represents one physical page frame

u Every process has its own page table
l Stored in physical memory
l Supported by a couple of hardware registers:

• Pointer to start of page table
• Page table length

u Recall fancier structures: segmentation+paging, multi-level PT
l Better for sparse virtual address spaces
l E.g. per-processor heaps, per-thread stacks, memory mapped files,

dynamically linked libraries, …
l Eliminate need for page table entries for address space “holes”

Multilevel Page Table

Physical
Memory

Implementation

Level 1

Level 2

Level 3

Processor

Virtual
Address

OffsetIndex 3Index 2Index 1

Frame Offset

Physical
Address

Copy on Write with Paging

u UNIX fork with copy on write
l Copy page table of parent into child process
l Mark all pages (in new and old page tables) as read-only
l Trap into kernel on write (in child or parent)
l Copy page
l Mark both as writeable
l Resume execution
l Finer grained than with segments

14

Shared Pages
u PTEs from two processes share

the same physical pages
l Entries in both page tables to point to

same page frames
l What use cases?

u Implementation issues
l What if you terminate a process

with shared pages
l Paging in/out shared pages
l Deriving the working set for a

process with shared pages
l Pinning/unpinning shared pages Page table 2

vp#
v vp#

v vp#

pp#
pp#

pp#

...

v

Page table 1

vp#
v vp#

v vp#

pp#
pp#

pp#

...

v

Physical
pages

15

Pinning (or Locking) Page Frames
u When do you need it?

l When DMA is in progress, you don’t want to page the pages out
to avoid CPU from overwriting the pages

u Mechanism?
l A data structure to remember all pinned pages
l Paging algorithm checks the data structure to decide on page

replacement
l Special calls to pin and unpin certain pages

16

Zeroing Pages
u Initialize pages to all zero values

l Heap and static data are initialized
u How to implement?

l On the first page fault on a data page or stack page, zero it
l Or, have a special thread zeroing pages in the background

Efficient address translation

u Recall translation lookaside buffer (TLB)
l Cache of recent virtual page -> physical page translations
l If cache hit, use translation
l If cache miss, walk (perhaps multi-level) page table

TLB

Physical
Memory

Virtual
Address

Virtual
Address

Frame Frame

Raise
Exception

Physical
Address

Hit
Valid

Processor Page
Table

Data

Data

Miss Invalid

Offset

18

TLB Performance

u Cost of translation =
Cost of TLB lookup + Prob(TLB miss) * cost of page table lookup

u Cost of a TLB miss on a modern processor?
l Cost of multi-level page table walk
l Software-controlled: plus cost of trap handler entry/exit
l Use additional caching principles: multi-level caching, etc

TLB is important:
Intel i7 Processor Chip

Intel i7 Memory hierarchy

i7 has 8MB as shared 3rd level cache; 2nd level cache is per-core

Problem with Translation Slowdown

u What is the cost of a first level TLB miss?
l Second level TLB lookup

u What is the cost of a second level TLB miss?
l x86: 2-4 level page table walk

u Problem: Do we need to wait for the address translation
in order to look up the caches (for code and data)?

Virtually vs. Physically Addressed Caches

u It can be too slow to first access TLB to find physical
address, then look up address in the cache

u Instead, first level cache is virtually addressed

u In parallel with cache lookup using virtual address,
access TLB to generate physical address in case of a
cache miss

Virtually addressed caches

Physical
Memory

Virtual
Address

Virtual
Address

Virtual
Address

Frame Frame

Raise
Exception

Physical
Address

Data

Hit Hit
Valid

Processor
Virtual
Cache

TLB Page
Table

Data

Data

Miss Miss Invalid

Offset

Physically vs virtually addressed cache

Physically addressed cache

Virtually addressed cache

u Problems with virtually addressed cache?
Diagram copied

Aliasing in virtually addressed cache

u Solution? Diagram copied

When do TLBs work/not work, Part I?

u Video Frame
Buffer: 32 bits x
1K x 1K = 4MB

Video Frame Buffer
Page#

0

1

2

3

1021

1022

1023

Superpages

u On many systems, TLB entry can be
l A page
l A superpage: a set of contiguous pages

u x86: superpage is a set of pages with one PTE
l x86 TLB entries

• 4KB
• 2MB
• 1GB

Superpages
Physical
Memory

Frame Offset

Physical
Address

SP Offset

Page# Offset

Virtual
Address

SF Offset

Translation Lookaside Buffer (TLB)

Superpage
(SP) or
Page#

Superframe
(SF) or
Frame Access

Matching Entry

Matching
Superpage

Page Table
Lookup

When do TLBs Work/Not Work, Part 2

u What happens when the OS changes the permissions
on a page?
l For demand paging, copy on write, zero on reference, …

u On a single-core processor?

u On a multicore?

When do TLBs Work/Not Work, Part 3

u What happens on a context switch?
l Keep using TLB?
l Flush TLB?

u Solution: Tagged TLB
l Each TLB entry has process ID
l TLB hit only if process ID matches current process

Physical
Memory

Frame Offset

Physical
Address

Page
Frame

Page# Offset

Virtual
Address

Translation Lookaside Buffer (TLB)

Implementation

PageProcess ID Frame Access

Matching Entry

Process ID

Processor

Page Table
Lookup

34

Summary
u Must consider many issues

l Global and local replacement strategies
l Management of backing store
l Primitive operations

• Pin/lock pages
• Zero pages
• Shared pages
• Copy-on-write

u Real system designs are complex

