
Self-Adjusting
Data Structures

Robert E. Tarjan
November 9,2021

Observations
Over the last 60 years, computer scientists have
developed many beautiful and theoretically efficient
algorithms and data structures.

But computer science is still a young field.

But we have often settled for the first (good enough)
solution.

It may not be the best – the design space is rich.

Goal: simplicity + efficiency = “elegance”
Identify the simplest possible efficient methods to solve
basic problems
algorithms from “the book”

a la “proofs from the book” (Erdős)
algorithms as simple as possible,

with provable resource bounds
for important input classes,

and efficient in practice

“Make everything as simple as possible,
but not simpler” - Einstein

Data structures

We need to do a sequence of simple operations

Amortization

When doing a sequence of operations, we may not care about the cost
of individual operations. Our goal is to minimize the total cost of the
sequence.
We can afford expensive operations if there are enough cheap ones.

Can we use this idea in the design and analysis of data structures?

Amortize: to liquidate a debt by installment payments.
From Medieval Latin: to reduce to the point

of death.
In analysis of algorithms: to pay for the total cost of a
sequence of operations by charging each operation an

equal (or appropriate) amount.

Beyond the worst case

By allowing some expensive operations if they are balanced by many
cheap ones, we expand the design space.
We can consider “out of balance” structures,as long as they are “in
balance” often enough.

Beyond the worst case

Sometimes, the “worst case” is rare. If the sequence of operations has
some structure, we would like to exploit this.
Are there “self-adjusting” data structures, which adapt to the way they
are used?

We have already seen an example of a self-adjusting data structure.

What is it?

Union-Find

Is weighted quick-union self-adjusting?

Union-Find

Is weighted quick-union self-adjusting?

No. By itself, it reduces the worst-case time per find to logarithmic.

Union-Find

Is path compression self-adjusting?

Union-Find

Is path compression self-adjusting?

Yes. By compressing each find path (paying a constant factor), it speeds
up later finds. (At least that is the hope…)

Does it work?

Tree representation of disjoint sets

Represent each set by a rooted tree, whose nodes are
the elements in the set, with each node x having a
pointer to its parent; if x is a root, x points to itself.
Store information about the set (such as its name) in
the root.

To find an element, follow the path of parent pointers
to the root, return the root.

To unite the sets containing two elements, find the
roots of their sets, make one point to the other.

The shape of each tree is arbitrary. The shape is
determined by the execution of the operations.

Weighted quick union

Store the number of nodes in each tree in its root. When uniting the
sets containing two elements, make the root of the smaller tree point
to that of the larger tree, breaking a tie arbitrarily.

Find with path compression

After finding the root of the tree containing a given element, traverse
the path again, making each node on the path point directly to the
root.

A set of trees with finds done with path compression is a self-adjusting
data structure

10

8

5

2

1

7

3 4

10

8

5

2

1

7

3 4

10

85 7

3 4

21

Path compression

How efficient are weighted quick union
and finds with path compression when
used together?

History of bounds (amortized time per find)

m = number of finds, n = number of elements

1971 O(1) (incorrect proof)
1972 O(lglgn) M. Fischer
1973 O(lg*n) Hopcroft & Ullman
1975 Θ(α(n, m/n)) Tarjan

lower bound analysis is top-down
upper bound analysis is bottom-up

later Ω(lglgn) (incorrect proof)
2005 O(α(n, m/n)) Seidel & Sharir (top-down)

Ackermann’s function (one version)

A1(n) = 2n
Ak(0) = 1 if k > 1
Ak(n) = Ak – 1(Ak(n – 1)) if k > 1, n > 0

= Ak – 1
(n)(1)

= Ak – 1 applied to 1, n times

A2(n) = 2n, A3(n) = tower of n 2’s, A4(n) grows very fast

α(n, d) = min{k > 0|Ak(éd + 2ù) > n}

Another example: binary search trees

Dictionary Problem: Support three operations on a set S of items:

Access: find a given item, return its info
Insert: add a new item
Delete: remove an item

Assume items are totally ordered, so that binary search is possible:
store in a binary search tree: one item per node, in symmetric order
Can also do range queries & other order-based operations. Can’t use
hashing for these.

Binary Search
Maintain set S in sorted order.
To find x in S:

If S empty, stop (failure).
If S non-empty, compare x to some item y in S.

If x = y, stop (success).
If x < y, search among elements in S < y
If x > y, search among elements in S > y

Data Structure:
Binary Search Tree

F

M

X

P

D

B E

Insertion
Search. Replace missing node by item.
Insert R

F

M

X

P

D

B E

R

Deletion

Find item. Remove node. Repair tree.

If leaf (no children), delete node.
If unary (one child), replace by other child.
If binary?

Delete E
Delete X

F

M

X

P

D

B E

R

F

M

P

D

B

R

If binary, swap with next item. Now in leaf or unary
node; delete. To find next item, follow left path from
right child.

Delete M:
Swap with P;
delete.

F

M

X

R

D

B E

P

Q

Y

G

F

P

X

R

D

B E

Q

Y

G

Time Per Operation

Proportional to depth of deepest node reached
during operation (length of path from root)

Goal: minimize tree depth

Best Case
All leaves have depths within 1: depth ëlog2 nû
n = number of items

Can achieve if tree is static

E

MB

F I L O RD TA

G S

Q

K

C JH P U

Average Case

Starting with an empty tree, if n items are inserted in random order,
expected tree depth (access time) is O(logn)

Worst Case
Natural but bad insertion order: sorted.
Insert A, B, C, D, E, F, G,…

Depth of tree is n – 1.
Average access time is ~n.

No better than a list!

A

B

C

D

E

F

G

Balanced Trees

Rebuild tree after each insert/delete? O(n) time
Want update times as well as search times to be O(logn).
Can’t keep all leaves within 1 in depth. Need more flexibility.
• How to define balance?
• How to restore balance after an insertion or deletion?

Restructuring primitive:
Rotation

Preserves symmetric order (searchability).
Changes some depths.
Complete: can transform any tree into any other tree

on the same set of items.
Local: takes O(1) time.

rotate at x rotate at y
y

x

x

y

A B

C A

B C

z z

right

left

Balance

Keep siblings similar

Height balance: keep heights of siblings not too far apart (constant
difference or constant ratio).
Weight balance: keep sizes of siblings (number of nodes in subtrees)
not too far apart (constant ratio).

(Left leaning) red-black trees

• Each link is red or black
• All paths from root to a missing node have the same number of black

links (link to a missing node is black)
• No two red links in a row on a path from root to a missing node
• (Left leaning) Every red link is a left link

During inserts (and deletes), color flips and rotations are done along
the access path to restore balance (restore the color rules)

Balanced trees minimize worst-case access time to
within a constant factor, but what if accesses are not
uniform?

Access locality:
Different but fixed access probabilities
Spatial locality: frequent accesses near certain

positions: fixed or moving fingers, e.g. first,
last

Time locality: working set

“Self-adjusting” Trees?

Is there a simple way to adjust a tree to match its usage?

First try: move to root

After an access, move the accessed node to the root by repeatedly
doing rotations.

Bad example: sequential access

n accesses in sequential order take ~n2/2 rotations
and recreate the original tree!

6

5

4

3

2

1

1

6

5

4

3

2

1

2

6

5

4

3

3

2

1

6

5

4

6

5

4

3

2

1

Splay trees (Sleator and Tarjan 1983)

Splay: to spread out. splay(x) moves x to root via
rotations, two at a time. Rotation order is generally
bottom-up, but if the current node and its parent are
both left or both right children, the top rotation is
done first.

splay(x): while x.p ¹ null do
if x.p.p = null then rotate(x) [zig]
else if x is left and x.p is right or x is right and

x.p is left then {rotate(x), rotate(x)} [zig-zag]
else {rotate(x.p), rotate(x)} [zig-zig]

zig

zig-zag

zig-zig

y

x

z

y

x

z

y

x

C

BA

B C
A

D

D

C

BA

x

y

CB

A

x
y z

DCBA

x

y

z
A

B

C D

root

Splay: pure zig-zag

7

1

6

2

5

3

4

7

1

6

2

4

3 5

7

1

4

2

3

6

5

4

1

2

3

7

6

5

Splay: pure zig-zig

7

6

5

4

3

2

1

7

6

5

4

1

2

3

7

6

1
4

52

3

1

6

7

5

4

2

3

Demonstration

A great resource: “Data Structure Visualizations” by David Galles:

https://www.cs.usfca.edu/~galles/visualization/Algorithms.html

(Go to “Splay Trees”)

Operations on splay trees

Access x: follow search path to x, then splay(x). Moves x to root.
Insert x: follow search path to null, replace by x, splay(x).
Delete x: follow search path to x, swap with successor if binary, delete

x, splay at parent.

Catenate(T1, T2) (all items in T1 < all items in T2):
splay at last node x in T1; x.right ¬ root(T2).

Split(T, x): splay(x); detach x.right = root of tree
containing all items > x.

T1’T2

x

+
T1 T2

x
catenate

T2

x

T T1

x

split

Results

Balance Theorem: Given any initial tree of n nodes,
performing m access operations takes O((m + n)logn)
amortized time.

Balance Theorem with Insert/Delete: Starting from an
empty tree, an arbitrary sequence of accesses,
insertions, and deletions takes O(1 + logn) amortized
time per operation, where n is the number of items in
the current tree.

Static optimality theorem: Start from an arbitrary tree
and do an arbitrary sequence of m accesses, with
each item accessed at least once. Let x.f = number of
accesses of x, the amortized time to access x is O(1 +
log(m/x.f)).

→ competitive with static optimum tree for
given access frequencies

Working Set Theorem: Start with an arbitrary tree and
do an arbitrary sequence of accesses, with each item
accessed at least once. The amortized time to access
x is O(1 + log(x.k)), where x.k is the number of distinct
items accessed since the last time x was accessed.

True but the proof is long and complicated

Dynamic Finger Theorem (Cole et al. 1990): Start from
an empty tree and do an arbitrary sequence of
insertions, deletions, and accesses. The amortized
time for an operation is O(1 + logt), where t is the
number of nodes in symmetric order between the last
node splayed and the current node splayed, inclusive.

Just how good is splaying?

Dynamic optimality conjecture: Given an initial tree and any access
sequence, splaying does as well (to within a constant factor) as the best
BST algorithm for the given sequence, even one that knows the entire
sequence in advance.
(Each access must be done by moving the accessed item to the root via
rotations. Each rotation costs 1)

Advantages of splay trees:
No balance information required.
Simple operations.
Take advantage of any exploitable pattern in

the access sequence.
Disadvantage of splay trees:

Many rotations, even during accesses!

Reference

R. E. Tarjan, Data Structures and Network Algorithms, SIAM,
1983.

Thanks!

