4. Graphs and Digraphs I

- introduction
- graph representation
- depth-first search
- path finding
- undirected graphs
4. **Graphs and Digraphs I**

- introduction
- graph representation
- depth-first search
- path finding
- undirected graphs
Graphs

Graph. Set of *vertices* connected pairwise by *edges*.

Why study graphs and graph algorithms?

- Broadly useful abstraction.
- Hundreds of graph algorithms.
- Thousands of real-world applications.
- Fascinating branch of computer science and discrete math.
Transportation networks

Vertex = subway stop; edge = direct route.
Social networks

Vertex = person; edge = social relationship.

"Visualizing Friendships" by Paul Butler
Vertex = Twitter account; edge = Twitter follower.
Protein-protein interaction network

Vertex = protein; edge = interaction.

Reference: Jeong et al, Nature Review | Genetics
Graph applications

<table>
<thead>
<tr>
<th>graph</th>
<th>vertex</th>
<th>edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>cell phone</td>
<td>phone</td>
<td>placed call</td>
</tr>
<tr>
<td>infectious disease</td>
<td>person</td>
<td>infection</td>
</tr>
<tr>
<td>financial</td>
<td>stock, currency</td>
<td>transactions</td>
</tr>
<tr>
<td>transportation</td>
<td>intersection</td>
<td>street</td>
</tr>
<tr>
<td>internet</td>
<td>router</td>
<td>fiber cable</td>
</tr>
<tr>
<td>web</td>
<td>web page</td>
<td>URL link</td>
</tr>
<tr>
<td>social relationship</td>
<td>person</td>
<td>friendship</td>
</tr>
<tr>
<td>object graph</td>
<td>object</td>
<td>pointer</td>
</tr>
<tr>
<td>protein network</td>
<td>protein</td>
<td>protein–protein interaction</td>
</tr>
<tr>
<td>circuit</td>
<td>gate, register, processor</td>
<td>wire</td>
</tr>
<tr>
<td>neural network</td>
<td>neuron</td>
<td>synapse</td>
</tr>
</tbody>
</table>
Undirected graph terminology

Graph. Set of vertices connected pairwise by edges.

Path. Sequence of vertices connected by edges, with no repeated edges.

Def. Two vertices are connected if there is a path between them.

Cycle. Path (with ≥ 1 edge) whose first and last vertices are the same.
Directed graph terminology

Digraph. Set of vertices connected pairwise by directed edges.

Directed path. Sequence of vertices connected by directed edges, with no repeated edges.

Def. Vertex w is reachable from vertex v if there is a directed path from v to w.

Directed cycle. Directed path (with ≥ 1 edge) whose first and last vertices are the same.
Which of these graphs is best modeled as a directed graph?

A. Facebook: vertex = person; edge = friendship.
B. Web: vertex = webpage; edge = URL link.
C. Internet: vertex = router; edge = fiber optic cable.
D. Molecule: vertex = atom; edge = chemical bond.
Some graph-processing problems

<table>
<thead>
<tr>
<th>graph problem</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>s–t path</td>
<td>Find a path between s and t.</td>
</tr>
<tr>
<td>shortest s–t path</td>
<td>Find a path with the fewest edges between s to t.</td>
</tr>
<tr>
<td>cycle</td>
<td>Find a cycle.</td>
</tr>
<tr>
<td>Euler cycle</td>
<td>Find a cycle that uses each edge exactly once.</td>
</tr>
<tr>
<td>Hamilton cycle</td>
<td>Find a cycle that uses each vertex exactly once.</td>
</tr>
<tr>
<td>connectivity</td>
<td>Is there a path between every pair of vertices?</td>
</tr>
<tr>
<td>graph isomorphism</td>
<td>Are two graphs isomorphic?</td>
</tr>
<tr>
<td>planarity</td>
<td>Draw the graph in the plane with no crossing edges.</td>
</tr>
</tbody>
</table>

Challenge. Which problems are easy? Difficult? Intractable?
4. **Graphs and Digraphs I**

- introduction
- graph representation
- depth-first search
- path finding
- undirected graphs
Digraph representation

Vertex representation.

- This lecture: integers between 0 and $V - 1$.
- Applications: use symbol table to convert between names and integers.

Def. A digraph is simple if it has no self-loops or parallel edges.
Digraph API

```java
public class Digraph {
    // create an empty digraph with V vertices
    Digraph(int V) {
    }
    // add a directed edge v→w
    void addEdge(int v, int w) {
    }
    // vertices adjacent from v
    Iterable<Integer> adj(int v) {
    }
    // number of vertices
    int V() {
    }
    ...

    // outdegree of vertex v in digraph G
    public static int outdegree(Digraph G, int v) {
        int count = 0;
        for (int w : G.adj(v)) {
            count++;
        }
        return count;
    }
}
```

- `Digraph(int V)` creates an empty digraph with V vertices.
- `void addEdge(int v, int w)` adds a directed edge v→w.
- `Iterable<Integer> adj(int v)` returns the vertices adjacent from v.
- `int V()` returns the number of vertices.

Note: this method is in full Digraph API, so no need to re-implement.

This API allows self loops and parallel edges.
Adjacency-matrix representation

Maintain a V-by-V boolean array; for each edge $v \rightarrow w$ in the digraph: $\text{adj}[v][w] = \text{true}$.

Note: parallel edges disallowed
What is the running time of the following code fragment?

Assume *adjacency-matrix* representation, $V = \#$ vertices, $E = \#$ edges.

```java
def spanning_tree(G):
    # Your implementation here
```

A. $\Theta(V)$
B. $\Theta(E + V)$
C. $\Theta(V^2)$
D. $\Theta(E V)$
Adjacency-lists representation

Maintain vertex-indexed array of lists.
What is the running time of the following code fragment?
Assume **adjacency-lists** representation, \(V = \# \) vertices, \(E = \# \) edges.

```java
for (int v = 0; v < G.V(); v++)
    for (int w : G.adj(v))
        StdOut.println(v + "->" + w);
```

print each edge once

A. \(\Theta(V) \)
B. \(\Theta(E + V) \)
C. \(\Theta(V^2) \)
D. \(\Theta(E \ V) \)
Digraph representations

In practice. Use adjacency-lists representation.

- Algorithms based on iterating over vertices adjacent from v.
- Real-world graphs tend to be sparse (not dense).

![Adjacency matrix and adjacency lists comparison](image)

<table>
<thead>
<tr>
<th>representation</th>
<th>space</th>
<th>add edge from v to w</th>
<th>has edge from v to w?</th>
<th>iterate over vertices adjacent from v?</th>
</tr>
</thead>
<tbody>
<tr>
<td>adjacency matrix</td>
<td>V^2</td>
<td>1 †</td>
<td>1</td>
<td>V</td>
</tr>
<tr>
<td>adjacency lists</td>
<td>$E + V$</td>
<td>1</td>
<td>$\text{outdegree}(v)$</td>
<td>$\text{outdegree}(v)$</td>
</tr>
</tbody>
</table>

† disallows parallel edges
public class Digraph
{
 private final int V;
 private Bag<Integer>[] adj;

 public Digraph(int V)
 {
 this.V = V;
 adj = new Bag[V];
 for (int v = 0; v < V; v++)
 adj[v] = new Bag<Integer>();
 }

 public void addEdge(int v, int w)
 {
 adj[v].add(w);
 }

 public Iterable<Integer> adj(int v)
 {
 return adj[v];
 }
}

adjacency lists
create empty digraph with V vertices
add edge \(v \rightarrow w \)
(parallel edges and self-loops allowed)
iterator for vertices adjacent from \(v \)
4. **Graphs and Digraphs I**

- introduction
- graph representation
- depth-first search
- path finding
- undirected graphs

https://algs4.cs.princeton.edu
Problem. Given a digraph G and vertex s, find all vertices reachable from s.
Depth-first search

Goal. Systematically traverse a digraph.

DFS (to visit a vertex v)

- Mark vertex v.
- Recursively visit all unmarked vertices w adjacent from v.

Typical applications.

- Reachability: find all vertices reachable from a given vertex.
- Path finding: find a directed path from one vertex to another vertex.
Directed depth-first search demo

To visit a vertex \(v \):

- Mark vertex \(v \).
- Recursively visit all unmarked vertices adjacent from \(v \).

a directed graph
Directed depth-first search demo

To visit a vertex v:

- Mark vertex v.
- Recursively visit all unmarked vertices adjacent from v.

<table>
<thead>
<tr>
<th>v</th>
<th>marked[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>T</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
</tr>
<tr>
<td>5</td>
<td>T</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
</tr>
</tbody>
</table>

reachable from vertex 0
Run DFS using the following adjacency-lists representation of digraph G, starting at vertex 0. In which order is $\text{dfs}(G, v)$ called?

A. 0 1 2 4 5 3 6
B. 0 1 2 4 5 6 3
C. 0 1 3 2 6 4 5
D. 0 1 2 6 4 5 3
public class DirectedDFS
{
 private boolean[] marked;

 public DirectedDFS(Digraph G, int s)
 {
 marked = new boolean[G.V()];
 dfs(G, s);
 }

 private void dfs(Digraph G, int v)
 {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w])
 dfs(G, w);
 }

 public boolean isReachable(int v)
 {
 return marked[v];
 }
}
Depth-first search: properties

Proposition. DFS marks all vertices reachable from s in $\Theta(E + V)$ time in the worst case.

Pf.

• Initializing an array of length V takes $\Theta(V)$ time.
• Each vertex is visited at most once.
• Visiting a vertex takes time proportional to its outdegree:

$$outdegree(v_0) + outdegree(v_1) + outdegree(v_2) + \ldots = E$$

in worst case, all V vertices reachable from s

Note. If all vertices are reachable from s, then $E \geq V - 1$, so V is a lower-order term.
Graphs and digraphs: quiz 5

What could happen if we marked a vertex at the end of the DFS call (instead of beginning)?

A. Marks a vertex not reachable from s.
B. Compile–time error.
C. Infinite loop / stack overflow.
D. None of the above.

```java
private void dfs(Digraph G, int v) {
    marked[v] = true;
    for (int w : G.adj(v))
        if (!marked[w])
            dfs(G, w);
}
```
Reachability application: program control-flow analysis

Every program is a digraph.
- Vertex = basic block of instructions (straight-line program).
- Edge = jump.

Dead-code elimination.
Find (and remove) unreachable code.

Infinite-loop detection.
Determine whether exit is unreachable.
Reachability application: mark–sweep garbage collector

Every data structure is a digraph.
- Vertex = object.
- Edge = reference/pointer.

Roots. Objects known to be directly accessible by program (e.g., stack frame).

Reachable objects. Objects indirectly accessible by program (starting at a root and following a chain of pointers).
Reachability application: mark–sweep garbage collector

Mark–sweep algorithm. [McCarthy, 1960]
- Mark: mark all reachable objects.
- Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses 1 extra mark bit per object (plus DFS function-call stack).
4. **Graphs and Digraphs I**

- introduction
- graph representation
- depth-first search
- path finding
- undirected graphs
Goal. DFS determines which vertices are reachable from \(s \). How to reconstruct paths?

Solution. Use parent-link representation.

Parent-Link Representation

<table>
<thead>
<tr>
<th>(v)</th>
<th>marked[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>-</td>
</tr>
</tbody>
</table>

The table above shows the marked and edgeTo[] values for each vertex, indicating which vertices are marked and the index of the next vertex in the path. The diagram illustrates the parent-link representation of paths from vertex 0.
Depth-first search: path finding

Parent-link representation of paths from s.

- Maintain an integer array `edgeTo[]`.
- Interpretation: `edgeTo[v]` is the next-to-last vertex on a path from s to v.
- To reconstruct path from s to v, trace `edgeTo[]` backward from v to s (and reverse).

<table>
<thead>
<tr>
<th>v</th>
<th>marked[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T</td>
<td>–</td>
</tr>
<tr>
<td>1</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>–</td>
</tr>
</tbody>
</table>

```java
class public Iterable<Integer> pathTo(int v)
{
    if (!marked[v]) return null;
    Stack<Integer> path = new Stack<>();
    for (int x = v; x != s; x = edgeTo[x])
        path.push(x);
    path.push(s);
    return path;
}
```
Depth-first search (with path finding): Java implementation

```java
public class DepthFirstDirectedPaths {

    private boolean[] marked;
    private int[] edgeTo;
    private int s;

    public DepthFirstDirectedPaths(Graph G, int s) {
        ... 
        dfs(G, s);
    }

    private void dfs(Digraph G, int v) {
        marked[v] = true;
        for (int w : G.adj(v))
            if (!marked[w]) {
                edgeTo[w] = v;
                dfs(G, w);
            }
    }

    // Other methods...

    // edgeTo[v] = previous vertex on path from s to v
    // v→w is edge that led to w
}
```

Graphs and digraphs: quiz 6

Suppose there are many paths from s to v. Which one does DepthFirstDirectedPaths find?

A. A shortest path (fewest edges).
B. A longest path (most edges).
C. Depends on digraph representation.
4. Graphs and Digraphs I

- introduction
- graph representation
- depth-first search
- path finding
- undirected graphs
Problem. Implement flood fill (Photoshop magic wand).
Depth-first search in undirected graphs

Problem. Given an undirected graph G and vertex s, find all vertices connected to s.

Solution. Treat undirected graph as a digraph, replacing each edge with two antiparallel edges.

DFS (to visit a vertex v)

Mark vertex v.
Recursively visit all unmarked vertices w adjacent to v.

Typical applications.

- Find all vertices connected to a given vertex.
- Find a path between two vertices.
Depth-first search demo

To visit a vertex v:

- Mark vertex v.
- Recursively visit all unmarked vertices adjacent to v.

graph G
Depth-first search demo

To visit a vertex v:

- Mark vertex v.
- Recursively visit all unmarked vertices adjacent to v.

<table>
<thead>
<tr>
<th>v</th>
<th>marked[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>T</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>-</td>
</tr>
</tbody>
</table>
How to represent an undirected edge v–w using adjacency lists?

A. Add w to adjacency list for v.

B. Add v to adjacency list for w.

C. Both A and B.

D. None of the above.
Digraph representation (review)

```java
public class Digraph {
    private final int V;
    private Bag<Integer>[] adj;

    public Digraph(int V) {
        this.V = V;
        adj = (Bag<Integer>[][]) new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<Integer>(v);
    }

    public void addEdge(int v, int w) {
        adj[v].add(w);
    }

    public Iterable<Integer> adj(int v) {
        return adj[v];
    }
}
```

- **adjacency lists**: Represents the graph as an array of bags where each bag represents the neighbors of a vertex.
- **create empty digraph with V vertices**: Initializes the digraph with V vertices.
- **add edge v→w**: Adds an edge from vertex v to vertex w. (parallel edges and self-loops allowed)
- **iterator for vertices adjacent from v**: Returns an iterator for the vertices adjacent to vertex v.
Graph representation

```java
public class Graph {
    private final int V;
    private Bag<Integer>[] adj;

    public Graph(int V) {
        this.V = V;
        adj = (Bag<Integer>[]) new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<Integer>();
    }

    public void addEdge(int v, int w) {
        adj[v].add(w);
        adj[w].add(v);
    }

    public Iterable<Integer> adj(int v) {
        return adj[v];
    }
}
```

adjacency lists

create empty graph with V vertices

add edge v–w
(parallel edges and self-loops allowed)

iterator for vertices adjacent to v

https://algs4.cs.princeton.edu/41undirected/Graph.java.html
Depth-first search (in digraphs)

Recall code for digraphs.

```java
public class DirectedFS {
    private boolean[] marked;

    public DirectedDFS(Digraph G, int s) {
        marked = new boolean[G.V()];
        dfs(G, s);
    }

    private void dfs(Digraph G, int v) {
        marked[v] = true;
        for (int w : G.adj(v))
            if (!marked[w])
                dfs(G, w);
    }

    public boolean visited(int v) {
        return marked[v];
    }
}
```

- `marked[v] = true if v reachable from s`
- Constructor marks vertices reachable from `s`
- Recursive DFS does the work
- Is vertex `v` is reachable from `s`?
Depth-first search (in undirected graphs)

Code for undirected graphs is essentially identical to code for digraphs.

```java
public class DepthFirstSearch {
    private boolean[] marked;

    public DepthFirstSearch(Graph G, int s) {
        marked = new boolean[G.V()];
        dfs(G, s);
    }

    private void dfs(Graph G, int v) {
        marked[v] = true;
        for (int w : G.adj(v))
            if (!marked[w])
                dfs(G, w);
    }

    public boolean visited(int v) {
        return marked[v];
    }
}
```

- `marked[v] = true` if `v` connected to `s`
- Constructor marks vertices connected to `s`
- Recursive DFS does the work
- Is vertex `v` is connected to `s`?
Depth-first search summary

DFS enables direct solution of simple graph and digraph problems.

- Reachability (in a digraph).
- Connectivity (in a graph).
- Path finding (in a graph or digraph).
- Topological sort.
- Directed cycle detection.

Next lecture: precept

DFS provides basis for solving difficult graph problems.

- Euler cycle.
- 2-satisfiability.
- Planarity testing.
- Strong components.

Dealing with graphs other than trees.

DFS provides basis for solving difficult graph problems.

- Euler cycle.
- 2-satisfiability.
- Planarity testing.
- Strong components.

Depth-first search and linear graph algorithms

Robert Tarjan

Abstract. The value of depth-first search or "backtracking" as a technique for solving problems is illustrated by two examples. An improved version of an algorithm for finding the strongly connected components of a directed graph and an algorithm for finding the biconnected components of an undirected graph are presented. The space and time requirements of both algorithms are bounded by $k_1 V + k_2 E + k_3$, where V is the number of vertices and E is the number of edges of the graph being examined.