

4.4 Shortest Paths

- properties
- APls
- Bellman-Ford algorithm
- Dijkstra's algorithm

Robert Sedgewick | Kevin Wayne
https://algs4.cs.princeton.edu

Google maps

Shortest paths in an edge-weighted digraph

Given an edge-weighted digraph, find the shortest path from s to t.

Shortest path applications

- PERT/CPM.
- Map routing.
- Seam carving. \qquad see Assignment 6
- Texture mapping.
- Robot navigation.
- Typesetting in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$.

https://en.wikipedia.org/wiki/Seam_carving
- Currency exchange.
- Urban traffic planning.
- Optimal pipelining of VLSI chip.
- Telemarketer operator scheduling.
- Routing of telecommunications messages.
- Network routing protocols (OSPF, BGP, RIP).
- Optimal truck routing through given traffic congestion pattern.

Shortest path variants

Which vertices?

- Single source: from one vertex s to every vertex.
- Single destination: from every vertex to one vertex t.
- Source-destination: from one vertex s to another vertex t.
- All pairs: between all pairs of vertices.

Restrictions on edge weights?

- Non-negative weights. \qquad we assume this in today's lecture
- Euclidean weights.
- Arbitrary weights.

Directed cycles?

- Prohibit.
- Allow.
implies that shortest path from s to v exists
(and that $E \geq V-1$)

Simplifying assumption. Each vertex is reachable from s.

Shortest paths: quiz 1

Which variant in car GPS? Hint: drivers make wrong turns occasionally.
A. Single source: from one vertex s to every vertex.
B. Single destination: from every vertex to one vertex t.
C. Source-destination: from one vertex s to another vertex t.
D. All pairs: between all pairs of vertices.

4.4 Shortest Paths

- properties

Algorithms

Robert Sedgewick | Kevin Wayn

Data structures for single-source shortest paths

Goal. Find a shortest path from s to every vertex.

Observation 1. There exists a shortest path from s to v that is simple.

Observation 2. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent a SPT with two vertex-indexed arrays:

- distTo[v] is length of a shortest path from s to v.
- edgeTo $[v]$ is last edge on a shortest path from s to v.

shortest-paths tree from 0

	distTo[]	edgeTo[]
0	0	null
1	1.05	$5->1$

parent-link representation

Edge relaxation

Relax edge $e=v \rightarrow w$.

- distTo [v] is length of shortest known path from s to v.
- distTo $[w]$ is length of shortest known path from s to w.
- edgeTo $[w]$ is last edge on shortest known path from s to w.
- If $e=v \rightarrow w$ yields shorter path from s to w, via v, update distTo[w] and edgeTo[w].
relax edge $\mathbf{e}=\mathbf{v} \rightarrow \mathbf{w}$

Shortest paths: quiz 2

What are the values of distTo[v] and distTo[w] after relaxing $e=v \rightarrow w ?$
A. $\quad 10.0$ and 15.0
B. $\quad 10.0$ and 17.0
C. $\quad 12.0$ and 15.0
D. $\quad 12.0$ and 17.0

Framework for shortest-paths algorithm

Generic algorithm (to compute a SPT from s)
For each vertex v : $\operatorname{distTo[v]}=\infty$.
For each vertex v: edgeTo[v] = null.
distTo[s] $=0$.
Repeat until distTo[v] values converge:

- Relax any edge.

Key properties. Throughout the generic algorithm,

- distTo[v] is either infinity or the length of a (simple) path from s to v.
- distTo[v] does not increase.

Framework for shortest-paths algorithm

Generic algorithm (to compute a SPT from s)
For each vertex v : $\operatorname{distTo[v]}=\infty$.
For each vertex v: edgeTo[v] = null.
distTo[s] $=0$.
Repeat until distTo[v] values converge:

- Relax any edge.

Efficient implementations.

- Which edge to relax next?
- How many edge relaxations needed to guarantee convergence?

Ex 1. Bellman-Ford algorithm.
Ex 2. Dijkstra's algorithm.
Ex 3. Topological sort algorithm.

4.4 Shortest Paths

- properties
- APls

Algorithms

Robert Sedgewick | Kevin Wayne
https://algs4.cs.princeton.edu

Weighted directed edge API

```
public class DirectedEdge
```


Relaxing an edge $e=v \rightarrow w$.

```
private void relax(DirectedEdge e)
{
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight())
    {
        distTo[w] = distTo[v] + e.weight();
        edgeTo [w] = e;
    }
}
```


Weighted directed edge: implementation in Java

API. Similar to Edge for undirected graphs, but a bit simpler.

```
public class DirectedEdge
{
    private final int v, w;
    private final double weight;
    public DirectedEdge(int v, int w, double weight)
    {
        this.v = v
        this.w = w;
        this.weight = weight;
    }
    public int from()
    { return v; }
    public int to()
    { return w; }
    public double weight()
    { return weight; }
}
```

from() and to() replace
either() and other()

Edge-weighted digraph API

API. Same as EdgeWeightedGraph except with DirectedEdge objects.

public class EdgeWeightedDigraph
EdgeWeightedDigraph(int V)
void addEdge(DirectedEdge e)
Iterable<DirectedEdge> adj(int v)
int $V()$
\vdots

Edge-weighted digraph: adjacency-lists representation

Edge-weighted digraph: adjacency-lists implementation in Java

Implementation. Almost identical to EdgeWeightedGraph.

```
public class EdgeWeightedDigraph
{
    private final int V;
    private final Bag<DirectedEdge>[] adj;
    public EdgeWeightedDigraph(int V)
    {
        this.V = V;
        adj = (Bag<Edge>[]) new Bag[V];
        for (int v = 0; v < v; v++)
            adj[v] = new Bag<>();
    }
    public void addEdge(DirectedEdge e)
    {
        int v = e.from(); _ «_ add edge e=v->w to
        adj[v].add(e);
    }
    public Iterable<DirectedEdge> adj(int v)
    { return adj[v]; }
}
```


Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.
public class SP

SP(EdgeWeightedDigraph G, int s) shortest paths from s in digraph G
double distTo(int v) length of shortest path from s to v

Iterable <DirectedEdge> pathTo(int v)
shortest path from s to v
boolean hasPathTo(int v)
is there a path from s to v ?

4.4 Shortest Paths

Algorithms

Robert Sedgewick | Kevin Wayn
https://algs4.cs.princeton.edu

Bellman-Ford algorithm

Bellman-Ford algorithm

For each vertex v: distTo[v] $=\infty$.

```
private void relax(DirectedEdge e)
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight())
    distTo[w] = distTo[v] + e.weight();
    edgeTo [w] = e:
```

```
for (int i = 1; i < G.V(); i++)
    for (int v = 0; v < G.V(); v++)
        for (DirectedEdge e : G.adj(v))
            relax(e);
```

 number of calls to relax() in pass \(i=\)
 outdegree \((0)+\) outdegree \((1)+\operatorname{outdegree}(2)+\ldots=E\)
 Running time. Algorithm takes $\Theta(E V)$ time and uses $\Theta(V)$ extra space.

Bellman-Ford algorithm demo

Repeat $V-1$ times: relax all E edges.

Bellman-Ford algorithm demo

Repeat $V-1$ times: relax all E edges.

shortest-paths tree from vertex s

Bellman-Ford algorithm: correctness proof

Proposition. Let $s=v_{0} \rightarrow v_{1} \rightarrow \ldots \rightarrow v_{k}=v$ be any path from s to v containing k edges.
Then, after pass k, distTo $\left[v_{k}\right] \leq$ weight $\left(e_{1}\right)+\operatorname{weight}\left(e_{2}\right)+\cdots+$ weight $\left(e_{k}\right)$.

Pf. [by induction on number of passes i]

- Base case: initially, distTo $\left[v_{0}\right] \leq 0$.
- Inductive hypothesis: after pass i, distTo $\left[v_{i}\right] \leq$ weight $\left(e_{1}\right)+$ weight $\left(e_{2}\right)+\cdots+$ weight $\left(e_{i}\right)$.
- This inequality continues to hold because distTo[v_{i}] cannot increase.
- Immediately after relaxing edge e_{i+1} in pass $i+1$, we have

```
distTo[\mp@subsup{v}{i+1}{}]\leq\operatorname{distTo}[\mp@subsup{v}{i}{}]+\operatorname{weight}(\mp@subsup{e}{i+1}{})\longleftarrow< edge relaxation
    \leqweight ( }\mp@subsup{e}{1}{})+\mathrm{ weight (e}\mp@subsup{e}{2}{})+\cdots+\mathrm{ weight }(\mp@subsup{e}{i}{})+\mathrm{ weight ( }\mp@subsup{e}{i+1}{}).\longleftarrow\mathrm{ inductive hypothesis
```

- This inequality continues to hold because distTo $\left[v_{i+1}\right]$ does not increase.

Bellman-Ford algorithm: correctness proof

Proposition. Let $s=v_{0} \rightarrow v_{1} \rightarrow \ldots \rightarrow v_{k}=v$ be any path from s to v containing k edges.
Then, after pass k, distTo $\left[v_{k}\right] \leq$ weight $\left(e_{1}\right)+$ weight $\left(e_{2}\right)+\cdots+$ weight $\left(e_{k}\right)$.

Corollary. Bellman-Ford computes shortest path distances.
Pf. [apply Proposition to a shortest path from s to v]

- There exists a shortest path P^{*} from s to v with $k \leq V-1$ edges.
- From Proposition, distTo $[v] \leq$ length $\left(P^{*}\right)$. \longleftarrow Bellman-Ford runs for $V-1$ passes
- Since distTo $[v]$ is the length of some path from s to v, $\operatorname{distTo}[v]=\operatorname{length}\left(P^{*}\right)$. .

Bellman-Ford algorithm: practical improvement

Observation. If distTo[v] does not change during pass i, not necessary to relax any edges incident from v in pass $i+1$.

Queue-based implementation of Bellman-Ford.

- Perform vertex relaxations. \qquad relax all edges incident from,
- Maintain queue of vertices whose distTo[] values changed since it was last relaxed.

relax in pass $i+1$

relax in pass i

Impact.

- In the worst case, the running time is still $\Theta(E V)$.
- But much faster in practice on typical inputs.

LONGEST PATH

Problem. Given a digraph G with positive edge weights and vertex s, find a longest simple path from s to every other vertex.

Goal. Design algorithm that takes $\Theta(E V)$ time in the worst case.

longest simple path from 0 to 4 : $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4$

Bellman-Ford algorithm: negative weights

Remark. The Bellman-Ford algorithm works even if some weights are negative, provided there are no negative cycles.

Negative cycle. A directed cycle whose length is negative.

length of negative cycle $=1+2+3+-8=-2$

Negative cycles and shortest paths. Length of path can be made arbitrarily negative by using negative cycle.

$$
0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow \cdots \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1 \rightarrow 2 \rightarrow 5
$$

4.4 Shortest Paths

Algorithms

- propertiés
$\checkmark A P I_{s}$
- Bellman-Ford algorithón
- Dijkstra's algorithm

Robert Sedgewick | Kevin Wayne
https://algs4.cs.princeton.edu

Edsger W. Dijkstra: select quotes

Dijkstra's algorithm

Dijkstra's algorithm

For each vertex v: distTo[v] $=\infty$.
For each vertex v: edgeTo[v] = null.
$\mathrm{T}=\varnothing$.
distTo[s] $=0$.
Repeat until all vertices are marked:

- Select unmarked vertex \mathbf{v} with the smallest distTo[] value.
- Mark v.
- Relax each edge incident from v.

Key difference with Bellman-Ford. Each edge gets relaxed exactly once!

Dijkstra's algorithm demo

Repeat until all vertices are marked:

- Select unmarked vertex v with the smallest distTo[] value.
- Mark v and relax all edges incident from v.
s

an edge-weighted digraph

$0 \rightarrow 1$	5.0
$0 \rightarrow 4$	9.0
$0 \rightarrow 7$	8.0
$1 \rightarrow 2$	12.0
$1 \rightarrow 3$	15.0
$1 \rightarrow 7$	4.0
$2 \rightarrow 3$	3.0
$2 \rightarrow 6$	11.0
$3 \rightarrow 6$	9.0
$4 \rightarrow 5$	4.0
$4 \rightarrow 6$	20.0
$4 \rightarrow 7$	5.0
$5 \rightarrow 2$	1.0
$5 \rightarrow 6$	13.0
$7 \rightarrow 5$	6.0
$7 \rightarrow 2$	7.0

Repeat until all vertices are marked:

- Select unmarked vertex v with the smallest distTo[] value.
- Mark v and relax all edges incident from v.

shortest-paths tree from vertex s

Dijkstra's algorithm: correctness proof

Invariant. For each marked vertex v : $\operatorname{distTo}[v]=d^{*}(v)$.

Pf. [by induction on number of marked vertices]
length of shortest path from s to v

- Let v be next vertex marked.
- Let P be the path from s to v of length distTo[v].
- Consider any other path P^{\prime} from s to v.
- Let $x \rightarrow y$ be first edge in P^{\prime} with x marked and y unmarked.
- P^{\prime} is already as long as P by the time it reaches y :
by construction

length(P) = distTo[v]
length(P) = distTo[v]
N Dijkstra chose
N Dijkstra chose
relax vertex x }\longrightarrow\leq\operatorname{distTo[x] + weight (x,y)
relax vertex x }\longrightarrow\leq\operatorname{distTo[x] + weight (x,y)
induction \longrightarrow}=\mp@subsup{d}{}{*}(x)+\operatorname{weight}(x,y
induction \longrightarrow}=\mp@subsup{d}{}{*}(x)+\operatorname{weight}(x,y
P' is a path from s to }x,\longrightarrow\leqlength(P')
P' is a path from s to }x,\longrightarrow\leqlength(P')

Dijkstra's algorithm: correctness proof

Invariant. For each marked vertex v : $\operatorname{distTo}[v]=d^{*}(v)$.
length of shortest path from s to v

Corollary 1. Dijkstra's algorithm computes shortest path distances.
Corollary 2. Dijkstra's algorithm relaxes vertices in increasing order of distance from s.

Dijkstra's algorithm: Java implementation

```
public class DijkstraSP
{
    private DirectedEdge[] edgeTo;
    private doub7e[] distTo;
    private IndexMinPQ<Double> pq;
```



```
PQ that supports decreasing the key
(stay tuned)
pub7ic DijkstraSP(EdgeWeightedDigraph G, int s)
    {
        edgeTo = new DirectedEdge[G.V()];
        distTo = new double[G.V()];
            pq = new IndexMinPQ<Double>(G.V());
PQ contains the unmarked vertices
        for (int v = 0; v < G.V(); v++)
            distTo[v] = Double.POSITIVE_INFINITY
        distTo[s] = 0.0;
        pq.insert(s, 0.0);
        while (!pq.isEmpty())
        {
            int v = pq.de\Min();
```



```
relax vertices in order
            for (DirectedEdge e : G.adj(v))
                relax(e);
        }
    }
}
```


Dijkstra's algorithm: Java implementation

When relaxing an edge, also update PQ:

- Found first path from s to w : add w to PQ.
- Found better path from s to w : decrease key of w in PQ.

```
private void relax(DirectedEdge e)
{
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight())
    {
        distTo[w] = distTo[v] + e.weight();
        edgeTo[w] = e;
        if (!pq.contains(w)) pq.insert(w, distTo[w]);
        else pq.decreaseKey(w, distTo[w]);
    }
}
```

Q. How to implement Decrease-key operation in a priority queue?

Indexed priority queue (Section 2.4)

Associate an index between 0 and $n-1$ with each key in a priority queue.

- Insert a key associated with a given index.
- Delete a minimum key and return associated index.
for Dijkstra's algorithm:
- Decrease the key associated with a given index.

$$
\begin{gathered}
n=V \\
\text { index }=\text { vertex } \\
\text { key }=\text { distance from } s
\end{gathered}
$$

```
public class IndexMinPQ<Key extends Comparable<Key>>
```


Decrease-Key in a Binary Heap

Goal. Implement Decrease-Key operation in a binary heap.

Decrease-Key in a Binary Heap

Goal. Implement Decrease-Key operation in a binary heap.

Solution.

- Find vertex in heap. How?
- Change priority of vertex and call swim() to restore heap invariant.

Extra data structure. Maintain an inverse array qp [] that maps from the vertex to the binary heap node index.

	0	1	2	3	4	5	6	7	8
	pq[]	-	v_{3}	v_{5}	v_{7}	v_{2}	v_{0}	v_{4}	v_{6}

Dijkstra's algorithm: which priority queue?

Number of PQ operations: V Insert, V Delete-Min, $\leq E$ Decrease-Key.

PQ implementation	INSERT	DELETE-MiN	DECREASE-KEY	total
unordered array	1	V	1	V^{2}
binary heap	$\log V$	$\log V$	$\log V$	$E \log V$
d-way heap	$\log _{d} V$	$d \log _{d} V$	$\log _{d} V$	$E \log _{E / V} V$
Fibonacci heap	1^{\dagger}	$\log V^{\dagger}$		$1{ }^{\dagger}$

\dagger amortized

Bottom line

- Array implementation optimal for complete digraphs.
- Binary heap much faster for sparse digraphs.
- 4-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but not worth implementing.

Priority-first search

Observation. Prim and Dijkstra are essentially the same algorithm.

- Prim: Choose next vertex that is closest to any vertex in the tree (via an undirected edge).
- Dijkstra: Choose next vertex that is closest to the source vertex (via a directed path).

Prim's algorithm

Dijkstra's algorithm

Algorithms for shortest paths

Variations on a theme: vertex relaxations.

- Bellman-Ford: relax all vertices; repeat $V-1$ times.
- Dijkstra: relax vertices in order of distance from s.
- Topological sort: relax vertices in topological order. \longleftarrow _ $\begin{gathered}\text { see Section } 4.4 \\ \text { and next lecture }\end{gathered}$

algorithm	worst-case running time	negative weights +	directed cycles
Bellman-Ford	$E V$	$\boldsymbol{\imath}$	$\boldsymbol{\iota}$
Dijkstra	$E \log V$		
topological sort	E		\boldsymbol{V}

Which shortest paths algorithm to use?

Select algorithm based on properties of edge-weighted digraph.

- Negative weights (but no "negative cycles"): Bellman-Ford.
- Non-negative weights: Dijkstra.
- DAG: topological sort.

algorithm	worst-case running time	negative weights t	directed cycles
Bellman-Ford	$E V$	$\boldsymbol{\imath}$	\boldsymbol{V}
Dijkstra	$E \log V$		
topological sort	E		\boldsymbol{V}

© Copyright 2021 Robert Sedgewick and Kevin Wayne

