4.3 Minimum Spanning Trees

- introduction
- cut property
- edge-weighted graph API
- Kruskal’s algorithm
- Prim’s algorithm

https://algs4.cs.princeton.edu
4.3 Minimum Spanning Trees

- introduction
- cut property
- edge-weighted graph API
- Kruskal’s algorithm
- Prim’s algorithm
Def. A **spanning tree** of G is a subgraph T that is:

- **A tree**: connected and acyclic.
- **Spanning**: includes all of the vertices.
Def. A **spanning tree** of G is a subgraph T that is:

- A tree: connected and acyclic.
- Spanning: includes all of the vertices.

![Diagram of a spanning tree](image.png)
Def. A **spanning tree** of G is a subgraph T that is:
- A tree: connected and acyclic.
- Spanning: includes all of the vertices.
Spanning tree

Def. A spanning tree of G is a subgraph T that is:

- A tree: connected and acyclic.
- Spanning: includes all of the vertices.
Input. Connected, undirected graph G with positive edge weights.

edge-weighted graph G
Minimum spanning tree problem

Input. Connected, undirected graph G with positive edge weights.

Output. A spanning tree of minimum weight.

![Graph with edge weights]

Brute force. Try all spanning trees?

Minimum spanning tree T

(weight = 50 = 4 + 6 + 5 + 8 + 9 + 11 + 7)
Let T be any spanning tree of a connected graph G with V vertices. Which of the following properties must hold?

A. T contains exactly $V - 1$ edges.
B. Removing any edge from T disconnects it.
C. Adding any edge to T creates a cycle.
D. All of the above.
Network design

Paving stone graph. Vertex = house; edge = potential connection; edge weight = # stones.

https://www.utdallas.edu/~besp/teaching/mst-applications.pdf
Hierarchical clustering

Microarray graph. Vertex = cancer tissue; edge = all pairs; edge weight = dissimilarity.

Reference: Botstein & Brown group
More MST applications

https://link.springer.com/article/10.1023/B:VISI.0000022288.19776.77

http://www.flickr.com/photos/quasimondo/2695389651

https://www.youtube.com/watch?v=GwKuFREOgmo
4.3 Minimum Spanning Trees

- introduction
- cut property
- edge-weighted graph API
- Kruskal’s algorithm
- Prim’s algorithm
Simplifying assumptions

For simplicity, we assume:

- The graph is connected. \(\Rightarrow \) MST exists.
- The edge weights are distinct. \(\Rightarrow \) MST is unique.

Note. Today's algorithms all work even if duplicate edge weights.

assumption simplifies the analysis

no two edge weights are equal
Cut property

Def. A cut in a graph is a partition of its vertices into two nonempty sets.

Def. A crossing edge of a cut is an edge that has one endpoint in each set.

Cut property. For any cut, its min-weight crossing edge is in the MST.
Cut property

Def. A *cut* in a graph is a partition of its vertices into two nonempty sets.

Def. A *crossing edge* of a cut is an edge that has one endpoint in each set.

Cut property. For any cut, its min-weight crossing edge is in the MST.

Note. A cut may have multiple edges in the MST.
Minimum spanning trees: quiz 2

Which is the min-weight edge crossing the cut \{ 2, 3, 5, 6 \}?

A. 0–7 (0.16)
B. 2–3 (0.17)
C. 0–2 (0.26)
D. 5–7 (0.28)

edges

two white
two gray
crossing edge but not min weight
Cut property: correctness proof

Def. A **cut** in a graph is a partition of its vertices into two nonempty sets.

Def. A **crossing edge** of a cut is an edge that has one endpoint in each set.

Cut property. For any cut, its min-weight crossing edge e is in the MST.

Pf. [by contradiction] Suppose e is not in the MST T.

- Adding e to T creates a cycle.
- Some other edge f in cycle must also be a crossing edge.
- Removing f and adding e yields a different spanning tree T'.
- Since $\text{weight}(e) < \text{weight}(f)$, we have $\text{weight}(T') < \text{weight}(T)$.
- Contradiction. ▪
Framework for minimum spanning tree algorithm

Generic algorithm (to compute MST in G)

\[T = \emptyset. \]

Repeat until \(T \) is a spanning tree:
- Find a cut in \(G \).
- \(e \leftarrow \text{min-weight crossing edge}. \)
- \(T \leftarrow T \cup \{ e \}. \)

Efficient implementations.

- Which cut? \(2^{V-2} \) distinct cuts
- How to compute min-weight crossing edge?

Ex 1. Kruskal’s algorithm.
Ex 2. Prim’s algorithm.
Ex 3. Borůvka’s algorithm.
4.3 Minimum Spanning Trees

- introduction
- cut property
- edge-weighted graph API
- Kruskal’s algorithm
- Prim’s algorithm
Weighted edge API

API. Edge abstraction for weighted edges.

```java
public class Edge implements Comparable<Edge>
{
    Edge(int v, int w, double weight) // create a weighted edge v–w
    {
    }

    int either() // either endpoint
    {
    }

    int other(int v) // the endpoint that's not v
    {
    }

    int compareTo(Edge that) // compare edges by weight
    {
    }
}
```

Idiom for processing an edge e. int v = e.either(), w = e.other(v).
public class Edge implements Comparable<Edge>
{
 private final int v, w;
 private final double weight;

 public Edge(int v, int w, double weight)
 {
 this.v = v;
 this.w = w;
 this.weight = weight;
 }

 public int either()
 { return v; }

 public int other(int vertex)
 {
 if (vertex == v) return w;
 else return v;
 }

 public int compareTo(Edge that)
 { return Double.compare(this.weight, that.weight); }
}

Weighted edge: Java implementation
API. Same as Graph and Digraph, except with explicit Edge objects.

```java
public class EdgeWeightedGraph

    EdgeWeightedGraph(int V)  // create an empty graph with V vertices
    void addEdge(Edge e)       // add weighted edge e to this graph
    Iterable<Edge> adj(int v) // edges incident to v

    ;
    ;
```
Edge-weighted graph: adjacency-lists representation

Representation. Maintain vertex-indexed array of Edge lists.

```plaintext
adj[]

0: [1, 3, 1, 2, 1, 7, 0, 7, 0.16]
1: [6, 2, 1, 2, 1, 7, 1, 5, 0.32, 0.17, 0.26, 0.36, 0.29]
2: [1, 2, 1, 3, 2, 7, 6, 0, 0.19, 0.34, 0.58, 0.28]
3: [1, 2, 6, 4, 0.93, 0.38, 4, 7, 0.37, 0.52, 0.35, 0.37]
4: [1, 5, 5, 7, 4, 5, 3, 6, 0.93, 0.58, 0.52, 0.38, 0.35]
5: [1, 7, 0, 7, 0.19, 0.26, 1, 2, 0.32, 0.36, 0.58, 0.28]
6: [6, 4, 2, 7, 1, 3, 6, 2, 0.34, 0.40, 0.52, 0.58, 0.93]
7: [2, 7, 1, 7, 0, 7, 5, 7, 0.19, 0.16, 0.28, 0.37, 0.37]
```

References to the same Edge object

Bag objects

`tinyEWG.txt`
public class EdgeWeightedGraph
{
 private final int V;
 private final Bag<Edge>[] adj;

 public EdgeWeightedGraph(int V)
 {
 this.V = V;
 adj = (Bag<Edge>[]) new Bag[V];
 for (int v = 0; v < V; v++)
 {
 adj[v] = new Bag<>();
 }
 }

 public void addEdge(Edge e)
 {
 int v = e.either(), w = e.other(v);
 adj[v].add(e);
 adj[w].add(e);
 }

 public Iterable<Edge> adj(int v)
 {
 return adj[v];
 }
}
Minimum spanning tree API

Q. How to represent the MST?
A. Technically, an MST is an edge-weighted graph. For convenience, we represent it as a set of edges.

```java
public class MST
{
    MST(EdgeWeightedGraph G) constructor
    Iterable<Edge> edges() edges in MST
    double weight() weight of MST
}
```
4.3 Minimum Spanning Trees

- introduction
- cut property
- edge-weighted graph API
- Kruskal’s algorithm
- Prim’s algorithm
Kruskal’s algorithm demo

Consider edges in ascending order of weight.
- Add next edge to T unless doing so would create a cycle.
Minimum spanning trees: quiz 3

In which order does Kruskal’s algorithm select edges in MST?

A. 1, 2, 4, 5, 6
B. 1, 2, 4, 5, 8
C. 1, 2, 5, 4, 8
D. 8, 2, 1, 5, 4
Kruskal’s algorithm: correctness proof

Proposition. [Kruskal 1956] Kruskal’s algorithm computes the MST.

Pf. Kruskal’s algorithm adds edge e to T if and only if e is in the MST.

[Case 1 ⇒] Kruskal’s algorithm adds edge $e = v \rightarrow w$ to T.
 - Vertices v and w are in different connected components of T.
 - Cut = set of vertices connected to v in T.
 - By construction of cut, no crossing edge
 - is currently in T
 - was considered by Kruskal before e
 - Thus, e is a min weight crossing edge.
 - Cut property $\Rightarrow e$ is in the MST.
Kruskal’s algorithm: correctness proof

Proposition. [Kruskal 1956] Kruskal’s algorithm computes the MST.

Pf. Kruskal’s algorithm adds edge e to T if and only if e is in the MST.

[Case 2 \iff] Kruskal’s algorithm discards edge $e = v \rightarrow w$.

- From Case 1, all edges currently in T are in the MST.
- The MST can’t contain a cycle, so it can’t also contain e. □
Kruskal’s algorithm: implementation challenge

Challenge. Would adding edge $v-w$ to T create a cycle? If not, add it.

Efficient solution. Use the union–find data structure.

- Maintain a set for each connected component in T.
- If v and w are in same set, then adding $v-w$ to T would create a cycle. [Case 2]
- Otherwise, add $v-w$ to T and merge sets containing v and w. [Case 1]
public class KruskalMST
{
 private Queue<Edge> mst = new Queue<>();

 public KruskalMST(EdgeWeightedGraph G)
 {
 Edge[] edges = G.edges();
 Arrays.sort(edges);
 UF uf = new UF(G.V());
 for (int i = 0; i < G.E(); i++)
 {
 Edge e = edges[i];
 int v = e.either(), w = e.other(v);
 if (uf.find(v) != uf.find(w))
 {
 mst.enqueue(e);
 uf.union(v, w);
 }
 }
 }

 public Iterable<Edge> edges()
 {
 return mst;
 }
}
Kruskal’s algorithm: running time

Proposition. In the worst case, Kruskal’s algorithm computes the MST in an edge-weighted graph in $\Theta(E \log E)$ time and $\Theta(E)$ extra space.

Pf.

- Bottlenecks are sort and union–find operations.

<table>
<thead>
<tr>
<th>operation</th>
<th>frequency</th>
<th>time per op</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sort</td>
<td>1</td>
<td>$E \log E$</td>
</tr>
<tr>
<td>Union</td>
<td>$V - 1$</td>
<td>$\log V$ †</td>
</tr>
<tr>
<td>Find</td>
<td>$2E$</td>
<td>$\log V$ †</td>
</tr>
</tbody>
</table>

† using weighted quick union

- Total. $\Theta(V \log V) + \Theta(E \log V) + \Theta(E \log E)$.

dominated by $\Theta(E \log E)$ since graph is connected
Minimum spanning trees: quiz 4

Given a graph with positive edge weights, how to find a spanning tree that minimizes the sum of the squares of the edge weights?

A. Run Kruskal’s algorithm using the original edge weights.
B. Run Kruskal’s algorithm using the squares of the edge weights.
C. Run Kruskal’s algorithm using the square roots of the edge weights.
D. All of the above.

\[\text{sum of squares} = 4^2 + 6^2 + 5^2 + 10^2 + 11^2 + 7^2 = 347 \]
Problem. Given an undirected graph G with positive edge weights, find a spanning tree that maximizes the sum of the edge weights.

Goal. Design algorithm that takes $\Theta(E \log E)$ time in the worst case.
Greed is good

Gordon Gecko (Michael Douglas) evangelizing the importance of greed
Wall Street (1986)
4.3 Minimum Spanning Trees

- introduction
- cut property
- edge-weighted graph API
- Kruskal’s algorithm
- Prim’s algorithm
Prim’s algorithm demo

- Start with vertex 0 and grow tree T.
- Repeat until $V - 1$ edges:
 - add to T the min-weight edge with exactly one endpoint in T
In which order does Prim’s algorithm select edges in the MST? Assume it starts from vertex s.

A. 8, 2, 1, 4, 5
B. 8, 2, 1, 5, 4
C. 8, 2, 1, 5, 6
D. 8, 2, 3, 4, 5
Prim’s algorithm: proof of correctness

Proposition. [Jarník 1930, Dijkstra 1957, Prim 1959]
Prim’s algorithm computes the MST.

Pf. Let $e = \text{min-weight edge with exactly one endpoint in } T$.
- Cut = set of vertices in T.
- Cut property \Rightarrow edge e is in the MST.

Challenge. How to efficiently find min-weight edge with exactly one endpoint in T?

edge $e = 7-5$ added to tree
Prim’s algorithm: lazy implementation demo

- Start with vertex 0 and grow tree T.
- Repeat until $V - 1$ edges:
 - add to T the min-weight edge with exactly one endpoint in T

![Graph with edge weights](image)

<table>
<thead>
<tr>
<th>Edge</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-7</td>
<td>0.16</td>
</tr>
<tr>
<td>2-3</td>
<td>0.17</td>
</tr>
<tr>
<td>1-7</td>
<td>0.19</td>
</tr>
<tr>
<td>0-2</td>
<td>0.26</td>
</tr>
<tr>
<td>5-7</td>
<td>0.28</td>
</tr>
<tr>
<td>1-3</td>
<td>0.29</td>
</tr>
<tr>
<td>1-5</td>
<td>0.32</td>
</tr>
<tr>
<td>2-7</td>
<td>0.34</td>
</tr>
<tr>
<td>4-5</td>
<td>0.35</td>
</tr>
<tr>
<td>1-2</td>
<td>0.36</td>
</tr>
<tr>
<td>4-7</td>
<td>0.37</td>
</tr>
<tr>
<td>0-4</td>
<td>0.38</td>
</tr>
<tr>
<td>6-2</td>
<td>0.40</td>
</tr>
<tr>
<td>3-6</td>
<td>0.52</td>
</tr>
<tr>
<td>6-0</td>
<td>0.58</td>
</tr>
<tr>
<td>6-4</td>
<td>0.93</td>
</tr>
</tbody>
</table>
Prim’s algorithm: lazy implementation

Challenge. How to efficiently find min-weight edge with exactly one endpoint in T?

Lazy solution. Maintain a PQ of edges with (at least) one endpoint in T.

- Key = edge; priority = weight of edge.
- **DELETE-MIN** to determine next edge $e = v–w$ to add to T.
- If both endpoints v and w are marked (both in T), disregard.
- Otherwise, let w be the unmarked vertex (not in T):
 - add e to T and mark w
 - add to PQ any edge incident to w
 but don’t bother if other endpoint is in T

1-7 is min weight edge with exactly one endpoint in T

priority queue of crossing edges

<table>
<thead>
<tr>
<th>Edge</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-7</td>
<td>0.19</td>
</tr>
<tr>
<td>0-2</td>
<td>0.26</td>
</tr>
<tr>
<td>5-7</td>
<td>0.28</td>
</tr>
<tr>
<td>2-7</td>
<td>0.34</td>
</tr>
<tr>
<td>4-7</td>
<td>0.37</td>
</tr>
<tr>
<td>0-4</td>
<td>0.38</td>
</tr>
<tr>
<td>6-0</td>
<td>0.58</td>
</tr>
</tbody>
</table>
Prim’s algorithm: lazy implementation

public class LazyPrimMST
{
 private boolean[] marked; // MST vertices
 private Queue<Edge> mst; // MST edges
 private MinPQ<Edge> pq; // PQ of edges

 public LazyPrimMST(WeightedGraph G)
 {
 pq = new MinPQ<>();
 mst = new Queue<>();
 marked = new boolean[G.V()];
 visit(G, 0); // assume graph G is connected

 while (mst.size() < G.V() - 1)
 {
 Edge e = pq.delMin();
 int v = e.either(), w = e.other(v);
 if (marked[v] && marked[w]) continue;
 mst.enqueue(e);
 if (!marked[v]) visit(G, v);
 if (!marked[w]) visit(G, w);
 }
 }

 private void visit(WeightedGraph G, int v)
 {
 marked[v] = true; // add v to tree T
 for (Edge e : G.adj(v))
 if (!marked[e.other(v)])
 pq.insert(e);
 }

 public Iterable<Edge> mst()
 { return mst; }
}
Lazy Prim’s algorithm: running time

Proposition. In the worst case, lazy Prim’s algorithm computes the MST in $\Theta(E \log E)$ time and $\Theta(E)$ extra space.

Pf.

- Bottlenecks are PQ operations.
- Each edge is added to PQ at most once.
- Each edge is deleted from PQ at most once.

<table>
<thead>
<tr>
<th>operation</th>
<th>frequency</th>
<th>binary heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSERT</td>
<td>E</td>
<td>$\log E$</td>
</tr>
<tr>
<td>DELETE-MIN</td>
<td>E</td>
<td>$\log E$</td>
</tr>
</tbody>
</table>
Prim’s algorithm: eager implementation

Challenge. Find min-weight edge with exactly one endpoint in T.

Observation. For each vertex v, need only min-weight edge connecting v to T.

- MST includes at most one edge connecting v to T. Why?
- If MST includes such an edge, it must take lightest such edge. Why?

Impact. PQ of vertices; $\Theta(V)$ extra space; $\Theta(E \log V)$ running time in worst case.

[Diagram of a graph with labeled vertices 0, 1, 2, 3, 4, 5, 6 and edges connecting them, with some edges in red and others in black.]

see textbook for details
MST: algorithms of the day

<table>
<thead>
<tr>
<th>algorithm</th>
<th>visualization</th>
<th>bottleneck</th>
<th>running time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kruskal</td>
<td></td>
<td>sorting, union–find</td>
<td>$E \log E$</td>
</tr>
<tr>
<td>Prim</td>
<td></td>
<td>priority queue</td>
<td>$E \log V$</td>
</tr>
</tbody>
</table>