Algorithms

A motivating example

Install minimum number of paving stones to connect all of the houses.

https://www.utdallas.edu/~besp/teaching/mst-applications.pdf

- A tree: connected and acyclic.
- Spanning: includes all of the vertices.

graph G spanning tree T

- A tree: connected and acyclic.
- Spanning: includes all of the vertices.

- A tree: connected and acyclic.
- Spanning: includes all of the vertices.

- A tree: connected and acyclic.
- Spanning: includes all of the vertices.

Minimum spanning tree problem

Input. Connected, undirected graph G with positive edge weights.

Minimum spanning tree problem

Input. Connected, undirected graph G with positive edge weights.

Output. A spanning tree of minimum weight.

minimum spanning tree T (weight = 50 = 4 + 6 + 5 + 8 + 9 + 11 + 7)

Brute force. Try all spanning trees?

Minimum spanning trees: quiz 1

Let T be any spanning tree of a connected graph G with V vertices. Which of the following properties must hold?

- A. T contains exactly V-1 edges.
- B. Removing any edge from T disconnects it.
- **C.** Adding any edge to *T* creates a cycle.
- **D.** All of the above.

Network design

Network. Vertex = network component; edge = potential connection; edge weight = cost.

electrical, computer, telecommunication, transportation

https://www.utdallas.edu/~besp/teaching/mst-applications.pdf

Hierarchical clustering

Microarray graph. Vertex = cancer tissue; edge = all pairs; edge weight = dissimilarity.

More MST applications

https://link.springer.com/article/10.1023/B:VISI.0000022288.19776.77

http://www.flickr.com/photos/quasimondo/2695389651

https://www.youtube.com/watch?v=GwKuFREOgmo

https://www.sciencedirect.com/science/article/pii/\$156713481500115X

Simplifying assumptions

For simplicity, we assume:

- The graph is connected. \Rightarrow MST exists.
- The edge weights are distinct. \Rightarrow MST is unique. \longleftarrow see Exercise 4.3.3 (solved on booksite)

Note. Today's algorithms all work fine with duplicate edge weights.

assumption simplifies the analysis

Cut property

Def. A cut in a graph is a partition of its vertices into two nonempty sets.

Def. A crossing edge of a cut is an edge that has one endpoint in each set.

Cut property. For any cut, its min-weight crossing edge is in the MST.

Cut property

Def. A cut in a graph is a partition of its vertices into two nonempty sets.

Def. A crossing edge of a cut is an edge that has one endpoint in each set.

Cut property. For any cut, its min-weight crossing edge is in the MST.

Note. A cut may have multiple edges in the MST.

Which is the min-weight edge crossing the cut $\{2, 3, 5, 6\}$?

- **A.** 0–7 (0.16)
- **B.** 2–3 (0.17)
- $\mathbf{C}. \quad 0-2 \quad (0.26)$
- **D.** 5–7 (0.28)

- 0-7 0.16
- 2-3 0.17
- 1-7 0.19
- 0-2 0.26
- 5-7 0.28
- 1-3 0.29
- 1-5 0.32
- 2-7 0.34
- 4-5 0.35
- 1-2 0.36
- 4-7 0.37
- 0-4 0.38
- 6-2 0.40
- 3-6 0.52
- 6-0 0.58
- 6-4 0.93

Cut property: correctness proof

Def. A cut in a graph is a partition of its vertices into two nonempty sets.

Def. A crossing edge of a cut is an edge that has one endpoint in each set.

Cut property. For any cut, its min-weight crossing edge e is in the MST.

Pf. [by contradiction] Suppose e is not in the MST T.

- Adding e to T creates a cycle.
- Some other edge f in cycle must also be a crossing edge.
- Removing f and adding e yields a different spanning tree T'.
- Since weight(e) < weight(f), we have weight(T') < weight(T).
- Contradiction.

Framework for minimum spanning tree algorithms

Generic algorithm (to compute MST in G)

 $T = \emptyset$.

Repeat until T is a spanning tree: \leftarrow *V* – 1 edges

- Find a cut in G.
- e ← min-weight crossing edge.
- T ← T ∪ { e }.

Efficient implementations.

- Which cut? \leftarrow 2 V-2 distinct cuts
- How to compute min-weight crossing edge?
- Ex 1. Kruskal's algorithm.
- Ex 2. Prim's algorithm.
- Ex 3. Borüvka's algorithm.

Weighted edge API

API. Edge abstraction for weighted edges.

Idiom for processing an edge e. int v = e.either(), w = e.other(v).

Weighted edge: Java implementation

```
public class Edge implements Comparable<Edge>
   private final int v, w;
   private final double weight;
   public Edge(int v, int w, double weight)
      this.v = v;
                                                     constructor
      this.w = w;
      this.weight = weight;
   public int either()
                                  either endpoint
   { return v; }
   public int other(int vertex)
                                    other endpoint
      if (vertex == v) return w;
      else return v;
   public int compareTo(Edge that)
                                                                       compare edges
      return Double.compare(this.weight, that.weight); }
                                                                         by weight
```

Edge-weighted graph API

API. Same as Graph and Digraph, except with explicit Edge objects.

```
public class EdgeWeightedGraph

EdgeWeightedGraph(int V) create an empty graph with V vertices

void addEdge(Edge e) add weighted edge e to this graph

Iterable<Edge> adj(int v) edges incident to v

::
```

Edge-weighted graph: adjacency-lists representation

Representation. Maintain vertex-indexed array of Edge lists.

Edge-weighted graph: adjacency-lists implementation

```
public class EdgeWeightedGraph
   private final int V;
                                                          same as Graph (but adjacency lists of Edge objects)
   private final Bag<Edge>[] adj;
   public EdgeWeightedGraph(int V)
     this.V = V;
                                                          constructor
     adj = (Bag<Edge>[]) new Bag[V];
     for (int v = 0; v < V; v++)
        adj[v] = new Bag<>();
   public void addEdge(Edge e)
     int v = e.either(), w = e.other(v);
     adj[v].add(e);
                                                          add same Edge object to both adjacency lists
     adj[w].add(e);
   public Iterable<Edge> adj(int v)
   { return adj[v]; }
```

Minimum spanning tree API

- Q. How to represent the MST?
- A. Technically, an MST is an edge-weighted graph. For convenience, we represent it as a set of edges.

public class MST		
	MST(EdgeWeightedGraph G)	constructor
Iterable <edge></edge>	edges()	edges in MST
double	weight()	weight of MST

Kruskal's algorithm demo

Consider edges in ascending order of weight.

Add next edge to T unless doing so would create a cycle.

an edge-weighted graph

graph edges sorted by weight

- 0-7 0.16
- 2-3 0.17
- 1-7 0.19
- 0-2 0.26
- 5-7 0.28
- 1-3 0.29
- 1-5 0.32
- 2-7 0.34
- 4-5 0.35
- 1-2 0.36
- 4-7 0.37
- 0-4 0.38
- 6-2 0.40
- 3-6 0.52
- 6-0 0.58
- 6-4 0.93

In which order does Kruskal's algorithm select edges in MST?

- **A.** 1, 2, 4, 5, 6
- **B.** 1, 2, 4, 5, 8
- **C.** 1, 2, 5, 4, 8
- **D.** 8, 2, 1, 5, 4

Kruskal's algorithm: correctness proof

Proposition. [Kruskal 1956] Kruskal's algorithm computes the MST.

Pf. Kruskal's algorithm adds edge e to T if and only if e is in the MST.

[Case 1 \Rightarrow] Kruskal's algorithm adds edge e = v - w to T.

- Vertices v and w are in different connected components of T.
- Cut = set of vertices connected to v in T.
- By construction of cut, no crossing edge
 - is currently in T
 - was considered by Kruskal before e
- Thus, e is a min weight crossing edge.
- Cut property $\Rightarrow e$ is in the MST.

Kruskal considers edges in ascending order by weight

Kruskal's algorithm: correctness proof

Proposition. [Kruskal 1956] Kruskal's algorithm computes the MST.

Pf. Kruskal's algorithm adds edge e to T if and only if e is in the MST.

[Case 2 \Leftarrow] Kruskal's algorithm discards edge e = v - w.

- From Case 1, all edges currently in *T* are in the MST.
- The MST can't contain a cycle, so it can't also contain e. •

Kruskal's algorithm: implementation challenge

Challenge. Would adding edge v–w to T create a cycle? If not, add it.

Efficient solution. Use the union-find data structure.

- Maintain a set for each connected component in T.
- If v and w are in same set, then adding v–w to T would create a cycle. [Case 2]
- Otherwise, add v—w to T and merge sets containing v and w. [Case 1]

connected components v w

Case 2: adding v-w creates a cycle

Case 1: add v-w to T and merge sets containing v and w

Kruskal's algorithm: Java implementation

```
public class KruskalMST
   private Queue<Edge> mst = new Queue<>();
                                                                 edges in the MST
   public KruskalMST(EdgeWeightedGraph G)
      Edge[] edges = G.edges();
                                                                 sort edges by weight
      Arrays.sort(edges);
      UF uf = new UF(G.V());
                                                                 maintain connected components
      for (int i = 0; i < G.E(); i++)
                                                                 optimization: stop as soon as V-1 edges in T
                                                                 greedily add edges to MST
           Edge e = edges[i];
          int v = e.either(), w = e.other(v);
                                                                 edge v–w does not create cycle
          if (uf.find(v) != uf.find(w))
              mst.enqueue(e);
                                                                 add edge e to MST
              uf.union(v, w);
                                                                 merge connected components
   public Iterable<Edge> edges()
      return mst; }
```

Kruskal's algorithm: running time

Proposition. In the worst case, Kruskal's algorithm computes the MST in an edge-weighted graph in $\Theta(E \log E)$ time and $\Theta(E)$ extra space.

Pf.

Bottlenecks are sort and union-find operations.

operation	frequency	time per op
SORT	1	$E \log E$
Union	V - 1	$\log V^{\dagger}$
FIND	2E	$\log V^{\dagger}$

† using weighted quick union

• Total. $\Theta(V \log V) + \Theta(E \log V) + \Theta(E \log E)$.

Given a graph with positive edge weights, how to find a spanning tree that minimizes the sum of the squares of the edge weights?

- A. Run Kruskal's algorithm using the original edge weights.
- B. Run Kruskal's algorithm using the squares of the edge weights.
- C. Run Kruskal's algorithm using the square roots of the edge weights.
- **D.** All of the above.

sum of squares = $4^2 + 6^2 + 5^2 + 10^2 + 11^2 + 7^2 = 347$

MAXIMUM SPANNING TREE

Problem. Given an undirected graph G with positive edge weights, find a spanning tree that maximizes the sum of the edge weights.

Goal. Design algorithm that takes $\Theta(E \log E)$ time in the worst case.

maximum spanning tree T (weight = 104)

Gordon Gecko (Michael Douglas) evangelizing the importance of greed Wall Street (1986)

Prim's algorithm demo

- Start with vertex 0 and grow tree *T*.
- Repeat until V-1 edges:
 - add to T the min-weight edge with exactly one endpoint in T

an edge-weighted graph

0-7 0.16 2-3 0.17 1-7 0.19 0-2 0.26 5-7 0.28 1-3 0.29 1-5 0.32 2-7 0.34 4-5 0.35 1-2 0.36 4-7 0.37 0-4 0.38 6-2 0.40 3-6 0.52 6-0 0.58 6-4 0.93

In which order does Prim's algorithm select edges in the MST?
Assume it starts from vertex s.

- **A.** 8, 2, 1, 4, 5
- **B.** 8, 2, 1, 5, 4
- **C.** 8, 2, 1, 5, 6
- **D.** 8, 2, 3, 4, 5

Prim's algorithm: proof of correctness

Proposition. [Jarník 1930, Dijkstra 1957, Prim 1959]

Prim's algorithm computes the MST.

Pf. Let $e = \min$ -weight edge with exactly one endpoint in T.

- Cut = set of vertices in T.
- Cut property \Rightarrow edge e is in the MST. \blacksquare

Challenge. How to efficiently find min-weight edge with exactly one endpoint in T?

Prim's algorithm: lazy implementation demo

- Start with vertex 0 and grow tree *T*.
- Repeat until V-1 edges:
 - add to T the min-weight edge with exactly one endpoint in T

an edge-weighted graph

0-7 0.16 2-3 0.17 1-7 0.19 0-2 0.26 5-7 0.28 1-3 0.29 1-5 0.32 2-7 0.34 4-5 0.35 1-2 0.36 4-7 0.37 0-4 0.38 6-2 0.40 3-6 0.52 6-0 0.58 6-4 0.93

Prim's algorithm: lazy implementation

Challenge. How to efficiently find min-weight edge with exactly one endpoint in T?

Lazy solution. Maintain a PQ of edges with (at least) one endpoint in T.

- Key = edge; priority = weight of edge.
- DELETE-MIN to determine next edge e = v w to add to T.
- If both endpoints v and w are marked (both in T), disregard.
- Otherwise, let w be the unmarked vertex (not in T):
 - add e to T and mark w
 - add to PQ any edge incident to $w \leftarrow$ but don't bother if other endpoint is in T

Prim's algorithm: lazy implementation

```
public class LazyPrimMST
   private boolean[] marked; // MST vertices
   private Queue<Edge> mst; // MST edges
   private MinPQ<Edge> pq; // PQ of edges
    public LazyPrimMST(WeightedGraph G)
        pq = new MinPQ<>();
        mst = new Queue<>();
        marked = new boolean[G.V()];
        visit(G, 0); \leftarrow assume graph G is connected
        while (mst.size() < G.V() - 1)
           Edge e = pq.delMin();
           int v = e.either(), w = e.other(v);
           if (marked[v] && marked[w]) continue; ←
           mst.enqueue(e);
           if (!marked[v]) visit(G, v);
           if (!marked[w]) visit(G, w);
```

```
private void visit(WeightedGraph G, int v)
                   marked[v] = true; \leftarrow add v to tree T
                   for (Edge e : G.adj(v))
                       if (!marked[e.other(v)])
                          pq.insert(e);
                  public Iterable<Edge> mst()
                     return mst; }
                                                for each edge e = v - w:
                                                add e to PQ if w not already in T
repeatedly delete the min-weight
edge e = v - w from PQ
ignore if both endpoints in tree T
add edge e to tree T
add either v or w to tree T
```

Lazy Prim's algorithm: running time

Proposition. In the worst case, lazy Prim's algorithm computes the MST in $\Theta(E \log E)$ time and $\Theta(E)$ extra space.

Pf.

- Bottlenecks are PQ operations.
- Each edge is added to PQ at most once.
- Each edge is deleted from PQ at most once.

operation	frequency	binary heap
INSERT	\boldsymbol{E}	$\log E$
DELETE-MIN	E	$\log E$

Prim's algorithm: eager implementation

Challenge. Find min-weight edge with exactly one endpoint in *T*.

Observation. For each vertex v, need only min-weight edge connecting v to T.

- MST includes at most one edge connecting v to T. Why?
- If MST includes such an edge, it must take lightest such edge. Why?

Impact. PQ of vertices; $\Theta(V)$ extra space; $\Theta(E \log V)$ running time in worst case.

MST: algorithms of the day

algorithm	visualization	bottleneck	running time
Kruskal		sorting union—find	$E \log E$
Prim		priority queue	$E \log V$

© Copyright 2021 Robert Sedgewick and Kevin Wayne