

3.2 Binary Search Trees

- BSTs
- ordered operations
- iteration
https://algs4.cs.princeton.edu

3.2 Binary Search Trees

- BSTs

Algorithms

Robert Sedgewick | Kevin Wayne

- ordered operations
- iteration
https://algs4.cs.princeton.edu

Binary search trees

Definition. A BST is a binary tree in symmetric order.

A binary tree is either:

- Empty.
- A node with links to two disjoint binary treesthe left subtree and the right subtree.

Symmetric order. Each node has a key; a node's key is:

- Larger than all keys in its left subtree.
- Smaller than all keys in its right subtree.
- [Duplicate keys not permitted.]

Binary search trees: quiz 1

Which of the following properties hold?

A. If a binary tree is heap ordered, then it is symmetrically ordered.
B. If a binary tree is symmetrically ordered, then it is heap ordered.
C. Both A and B.
D. Neither A nor B.

Binary search tree demo

Search. If less, go left; if greater, go right; if equal, search hit.
successful search for H

Insert. If less, go left; if greater, go right; if nu11, insert.
insert G

BST representation in Java

Java definition. A BST is a reference to a root Node.

A Node is composed of four fields:

- A Key and a Value.
- A reference to the left and right subtree.


```
private class Node
{
    private Key key;
    private Value val;
    private Node left, right;
    public Node(Key key, Value val)
    {
        this.key = key;
        this.val = val;
    }
}
```


Key and Value are generic types; Key is Comparable

BST implementation (skeleton)

```
public class BST<Key extends Comparable<Key>, Value>
{
        private Node root;
```

\qquad

``` root of BST
    private class Node
    { /* see previous slide */ }
    public void put(Key key, Value val)
    { /* see slide in this section */ }
    public Value get(Key key)
    { /* see next slide */ }
    public Iterable<Key> keys()
    { /* see slides in next section */ }
    public void delete(Key key)
    { /* see textbook */ }
}
```


BST search: Java implementation

Get. Return value corresponding to given key, or null if no such key.

```
public Value get(Key key)
{
    Node x = root;
    while (x != null)
    {
        int cmp = key.compareTo(x.key);
        if (cmp < 0) x = x.left;
        else if (cmp > 0) x = x.right;
        else return x.val;
    }
    return null;
}
```

Cost. Number of compares $=1+$ depth of node.

BST insert

Put. Associate value with key.

Search for key, then two cases:

- Key in tree \Rightarrow reset value.
- Key not in tree \Rightarrow add new node.
inserting L
 at this null link

Insertion into a BST

BST insert: Java implementation

Put. Associate value with key.

```
public void put(Key key, Value val)
{ root = put(root, key, val); }
private Node put(Node x, Key key, Value val)
{
    if (x == nul1) return new Node(key, val);
    int cmp = key.compareTo(x.key);
    if (cmp < 0) x.left = put(x.left, key, val);
    else if (cmp > 0) x.right = put(x.right, key, val);
    else x.val = val;
    return x;
}
\ Warning: concise but tricky code; read carefully!
```

Cost. Number of compares $=1+$ depth of node.

Tree shape

- Many BSTs correspond to same set of keys.
- Number of compares for search/insert = 1 + depth of node.

height between $\log _{2} n$ and $n-1$
Bottom line. Tree shape depends on order of insertion.

BST insertion: random order visualization

Ex. Insert keys in random order.

Binary search trees: quiz 2

Suppose that you insert \boldsymbol{n} keys in random order into a BST.

What is the expected height of the resulting BST?
A. $\sim \log _{2} n$
B. $\sim 2 \ln n$
C. $\quad 4.31107 \ln n$
D. $\Theta(n)$

ST implementations: summary

implementation	guarantee		average case		operations on keys
	search	insert	search hit	insert	
sequential search (unordered list)	n	n	n	n	equals()
binary search (ordered array)	$\log n$	n	$\log n$	n	compareTo()
BST	n	n	$\log n$	$\log n$	compareTo()
	Why not s a (probabilis of $\Theta($				

3.2 Binary Search Trees

- BSTs
- iteration

Algorithms

Robert Sedgewick | Kevin Wayne

- ordered operations
https://algs4.cs.princeton.edu

In which order does traverse(root) print the keys in the BST?

```
private void traverse(Node x)
{
    if (x == nul7) return;
    traverse(x.7eft);
    StdOut.println(x.key);
    traverse(x.right);
}
```

A. ACEHMRSX
B. \quad SEACRHMX
C. CAMHREXS
D. $\quad S E X A R C H M$

Inorder traversal

```
inorder(S)
    inorder(E)
        inorder(A)
            print A
            inorder(C)
            print C
            done C
        done A
        print E
        inorder(R)
            inorder(H)
                print H
                inorder(M)
                    print M
                done M
                done H
            print R
            done R
        done E
    print S
    inorder(X)
        print X
        done X
    done S
done S
```


output: ACEHMRSX

Inorder traversal

- Traverse left subtree.
- Enqueue key.
- Traverse right subtree.

> add items to a collection that is Iterable

Property. Inorder traversal of a BST yields keys in ascending order.

Property. Inorder traversal of a binary tree with n nodes takes $\Theta(n)$ time.
Pf. $\Theta(1)$ time per node in BST.

Level-Order Traversal

Level-order traversal of a binary tree.

- Process root.
- Process children of root, from left to right.
- Process grandchildren of root, from left to right.
- ...

LeVel-Order Traversal

Q1. How to compute level-order traversal of a binary tree in $\Theta(n)$ time?

level-order traversal: S E T A R C H M

LeVEL-ORDER TRAVERSAL

Q2. Given the level-order traversal of a BST, how to (uniquely) reconstruct?

3.2 Binary Search Trees

Algorithms

- BST
\checkmark iteratión
- ordered operations

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

Minimum and maximum

Minimum. Smallest key in BST.
Maximum. Largest key in BST.
Q. How to find the min / max?

Floor and ceiling

Floor. Largest key in BST \leq query key.
Ceiling. Smallest key in BST \geq query key.

Computing the floor

Floor. Largest key in BST \leq query key.
Ceiling. Smallest key in BST \geq query key.

Key idea.

- To compute floor(key) or ceiling(key), search for key.
- Both floor (key) and ceiling(key) are on search path.
- Moreover, as you go down search path, any candidates get better and better.

Computing the floor: Java implementation

Invariant 1. The floor is either champ or in subtree rooted at x.
Invariant 2. Node x is in the right subtree of node containing champ.

BST: ordered symbol table operations summary

order of growth of worst-case running time of ordered symbol table operations

ST implementations: summary

implementation	worst case		ordered ops?	key interface
	search	insert		
sequential search (unordered list)	n	n		equals()
binary search (sorted array)	$\log n$	n	\checkmark	compareTo()
BST	n	n	\checkmark	compareTo()
red-black BST	$\log n$	n	\checkmark	compareTo()

© Copyright 2021 Robert Sedgewick and Kevin Wayne

