3.2 Binary Search Trees

- BSTs
- ordered operations
- iteration

https://algs4.cs.princeton.edu
3.2 Binary Search Trees

- BSTs
- ordered operations
- iteration
Definition. A BST is a binary tree in symmetric order.

A binary tree is either:

- Empty.
- A node with links to two disjoint binary trees (left subtree and right subtree).

Symmetric order. Each node has a key; a node's key is:

- Larger than all keys in its left subtree.
- Smaller than all keys in its right subtree.
- [Duplicate keys not permitted.]
Which of the following properties hold?

A. If a binary tree is heap ordered, then it is symmetrically ordered.
B. If a binary tree is symmetrically ordered, then it is heap ordered.
C. Both A and B.
D. Neither A nor B.
Search. If less, go left; if greater, go right; if equal, search hit.

successful search for H
Insert. If less, go left; if greater, go right; if null, insert.

insert G
BST representation in Java

Java definition. A BST is a reference to a root Node.

A Node is composed of four fields:

- A Key and a Value.
- A reference to the left and right subtree.

```
private class Node {
    private Key key;
    private Value val;
    private Node left, right;

    public Node(Key key, Value val) {
        this.key = key;
        this.val = val;
    }
}
```

Key and Value are generic types; Key is Comparable

Binary search tree

- BST with smaller keys
- BST with larger keys
BST implementation (skeleton)

```java
public class BST<Key extends Comparable<Key>, Value>
{
    private Node root;  // root of BST

    private class Node
    { /* see previous slide */ }

    public void put(Key key, Value val)
    { /* see slide in this section */ }

    public Value get(Key key)
    { /* see next slide */ }

    public Iterable<Key> keys()
    { /* see slides in next section */ }

    public void delete(Key key)
    { /* see textbook */ }
}
```
BST search: Java implementation

Get. Return value corresponding to given key, or null if no such key.

```java
public Value get(Key key) {
    Node x = root;
    while (x != null) {
        int cmp = key.compareTo(x.key);
        if (cmp < 0) x = x.left;
        else if (cmp > 0) x = x.right;
        else return x.val;
    }
    return null;
}
```

Cost. Number of compares = 1 + depth of node.
BST insert

Put. Associate value with key.

Search for key, then two cases:
- Key in tree ⇒ reset value.
- Key not in tree ⇒ add new node.

Insertion into a BST

- **inserting L:**
 - search for L ends at this null link
 - create new node → L
 - reset links on the way up

Insertion into a BST
BST insert: Java implementation

Put. Associate value with key.

```java
public void put(Key key, Value val) {
    root = put(root, key, val);
}

private Node put(Node x, Key key, Value val) {
    if (x == null) return new Node(key, val);
    int cmp = key.compareTo(x.key);
    if   (cmp < 0) x.left = put(x.left, key, val);
    else if(cmp > 0) x.right = put(x.right, key, val);
    else x.val = val;
    return x;
}
```

⚠️ Warning: concise but tricky code; read carefully!

Cost. Number of compares = 1 + depth of node.
Tree shape

- Many BSTs correspond to same set of keys.
- Number of compares for search/insert = 1 + depth of node.

Bottom line. Tree shape depends on order of insertion.
BST insertion: random order visualization

Ex. Insert keys in random order.

N = 255
max = 16
avg = 9.1
opt = 7.0
Suppose that you insert n keys in random order into a BST.
What is the expected height of the resulting BST?

A. $\sim 2 \log_2 n$
B. $\sim 2 \ln n$
C. $\sim 4.31107 \ln n$
D. $\sim n / 2$
ST implementations: summary

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Guarantee</th>
<th>Average Case</th>
<th>Operations on Keys</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>search hit</td>
</tr>
<tr>
<td>sequential search</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>(unordered list)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>binary search</td>
<td>$\log n$</td>
<td>n</td>
<td>$\log n$</td>
</tr>
<tr>
<td>(ordered array)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BST</td>
<td>n</td>
<td>n</td>
<td>$\log n$</td>
</tr>
</tbody>
</table>

Why not shuffle to ensure a (probabilistic) guarantee of $\Theta(\log n)$ time?
3.2 Binary Search Trees

- BSTs
- iteration
- ordered operations

https://algs4.cs.princeton.edu
In which order does `traverse(root)` print the keys in the BST?

A. A C E H M R S X
B. S E A C R H M X
C. C A M H R E X S
D. S E X A R C H M

```java
private void traverse(Node x) {
    if (x == null) return;
    traverse(x.left);
    StdOut.println(x.key);
    traverse(x.right);
}
```
Inorder traversal

```plaintext
inorder(S)
  inorder(E)
    inorder(A)
      print A
    inorder(C)
      print C
      done C
    done A
    print E
  inorder(R)
    inorder(H)
      print H
    inorder(M)
      print M
      done M
    done H
    print R
    done R
  done E
  print S
  inorder(X)
    print X
    done X
  done S
```

output: A C E H M R S X
Inorder traversal

- Traverse left subtree.
- Enqueue key.
- Traverse right subtree.

Property. Inorder traversal of a BST yields keys in ascending order.
Inorder traversal: running time

Property. Inorder traversal of a binary tree with n nodes takes $\Theta(n)$ time.

Silicon Valley ("The Blood Boy")
Level-order traversal of a binary tree.

- Process root.
- Process children of root, from left to right.
- Process grandchildren of root, from left to right.
- ...

level-order traversal: S E T A R C H M
Q1. How to compute level-order traversal of a binary tree in $\Theta(n)$ time?

level-order traversal: S E T A R C H M
Q2. Given the level-order traversal of a BST, how to (uniquely) reconstruct?

Ex. SETARCHEM

needed for Quizzera quizzes
3.2 Binary Search Trees

- BSTs
- iteration
- ordered operations
Minimum and maximum

Minimum. Smallest key in BST.

Maximum. Largest key in BST.

Q. How to find the min / max?
Floor and ceiling

Floor. Largest key in BST \leq query key.

Ceiling. Smallest key in BST \geq query key.
Computing the floor

Floor. Largest key in BST \leq query key.

Ceiling. Smallest key in BST \geq query key.

Key idea.

- To compute floor(key) or ceiling(key), search for key.
- Both floor(key) and ceiling(key) are on search path.
- Moreover, as you go down search path, any candidates get better and better.
Computing the floor: Java implementation

Invariant 1. The floor is either `champ` or in subtree rooted at `x`.

Invariant 2. Node `x` is in the right subtree of node containing `champ`.

```java
public Key floor(Key key) {
    return floor(root, key, null);
}

private Key floor(Node x, Key key, Key champ) {
    if (x == null) return champ;
    int cmp = key.compareTo(x.key);
    if (cmp < 0) return floor(x.left, key, champ);
    else if (cmp > 0) return floor(x.right, key, x.key);
    else return x.key;
}
```
Rank and select

Rank. How many keys < \textit{key} ?

Select. Key of rank \(k \).

Q. How to implement \texttt{rank()} and \texttt{select()} efficiently for BSTs?
A. In each node, store the number of nodes in its subtree.

![Subtree count diagram](image)
BST implementation: subtree counts

```java
private class Node {
    private Key key;
    private Value val;
    private Node left;
    private Node right;
    private int size;
}
```

```java
public int size() {
    return size(root);
}
```

```java
private int size(Node x) {
    if (x == null) return 0;
    return x.size;
}
```

```java
private Node put(Node x, Key key, Value val) {
    if (x == null) return new Node(key, val, 1);
    int cmp = key.compareTo(x.key);
    if (cmp < 0) x.left = put(x.left, key, val);
    else if (cmp > 0) x.right = put(x.right, key, val);
    else x.val = val;
    x.size = 1 + size(x.left) + size(x.right);
    return x;
}
```
Computing the rank

Rank. How many keys < *key*?

Case 1. [*key* < *key* in node]
- Keys in left subtree? *count*
- Key in node? 0
- Keys in right subtree? 0

Case 2. [*key* > *key* in node]
- Keys in left subtree? *all*
- Key in node. 1
- Keys in right subtree? *count*

Case 3. [*key* = *key* in node]
- Keys in left subtree? *count*
- Key in node. 0
- Keys in right subtree? 0
```java
public int rank(Key key)
{   return rank(key, root); }

private int rank(Key key, Node x)
{
    if (x == null) return 0;
    int cmp = key.compareTo(x.key);
    if (cmp < 0) return rank(key, x.left);
    else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
    else return size(x.left);
}
```
BST: ordered symbol table operations summary

<table>
<thead>
<tr>
<th>Operations</th>
<th>Sequential Search</th>
<th>Binary Search</th>
<th>BST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search</td>
<td>n</td>
<td>$\log n$</td>
<td>h</td>
</tr>
<tr>
<td>Insert</td>
<td>n</td>
<td>n</td>
<td>h</td>
</tr>
<tr>
<td>Min / Max</td>
<td>n</td>
<td>1</td>
<td>h</td>
</tr>
<tr>
<td>Floor / Ceiling</td>
<td>n</td>
<td>$\log n$</td>
<td>h</td>
</tr>
<tr>
<td>Rank</td>
<td>n</td>
<td>$\log n$</td>
<td>h</td>
</tr>
<tr>
<td>Select</td>
<td>n</td>
<td>1</td>
<td>h</td>
</tr>
<tr>
<td>Ordered Iteration</td>
<td>$n \log n$</td>
<td>n</td>
<td>n</td>
</tr>
</tbody>
</table>

$h = \text{height of BST}$

Order of growth of running time of ordered symbol table operations
ST Implementations: Summary

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Worst Case</th>
<th>Ordered Ops?</th>
<th>Key Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Search</td>
<td>Insert</td>
<td></td>
</tr>
<tr>
<td>sequential search (unordered list)</td>
<td>n</td>
<td>n</td>
<td>equals()</td>
</tr>
<tr>
<td>binary search (sorted array)</td>
<td>$\log n$</td>
<td>n</td>
<td>✔ compareTo()</td>
</tr>
<tr>
<td>BST</td>
<td>n</td>
<td>n</td>
<td>✔ compareTo()</td>
</tr>
<tr>
<td>red-black BST</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>✔ compareTo()</td>
</tr>
</tbody>
</table>

Next week: BST whose height is guaranteed to be $\Theta(\log n)$