Algorithms

Collections

A collection is a data type that stores a group of items.

data type	core operations	data structure
stack	Push, Pop	singly linked list
queue	Enqueue, Dequeue	resizing array
deque	ADD-FIRST, REMOVE-FIRST, ADD-LAST, REMOVE-LAST	doubly linked list resizing array
priority queue	INSERT, DELETE-MAX	binary heap
symbol table	Put, Get, Delete	binary search tree
set	Add, Contains, Delete	hash table

Priority queue

Collections. Insert and remove items. Which item to remove?

Stack. Remove the item most recently added.

Queue. Remove the item least recently added.

Randomized queue. Remove a random item.

Priority queue. Remove the largest (or smallest) item.

Generalizes: stack, queue, randomized queue.

triage in an emergency room (priority = urgency of wound/illness)

operation	argument	return value
insert	Р	
insert	Q	
insert	E	
remove max		Q
insert	X	•
insert	Α	
insert	M	
remove max		X
insert	Р	
insert	L	
insert	Ε	
remove max		Р

Max-oriented priority queue API

Requirement. Must insert keys of the same (generic) type; type must be Comparable.

"bounded type parameter"								
public class MaxPQ <key comparable<key="" extends="">></key>								
	MaxPQ()	create an empty priority queue						
void	insert(Key v)	insert a key						
Key	delMax()	return and remove a largest key						
boolean	isEmpty()	is the priority queue empty?						
Key	max()	return a largest key						
int	size()	number of keys in the priority queue						

Note. Duplicate keys allowed; delMax() removes and returns any maximum key.

Min-oriented priority queue API

Analogous to MaxPQ.

<pre>public class MinPQ<key comparable<key="" extends="">></key></pre>						
	MinPQ()	create an empty priority queue				
void	insert(Key v)	insert a key				
Key	delMin()	return and remove a smallest key				
boolean	isEmpty()	is the priority queue empty?				
Key	min()	return a smallest key				
int	size()	number of keys in the priority queue				

Warmup client. Sort a stream of integers from standard input.

Priority queue: applications

```
customers in a line, colliding particles ]

    Event-driven simulation.

                                       bin packing, scheduling ]

    Discrete optimization.

    Artificial intelligence.

                                       A* search ]
                                       web cache ]

    Computer networks.

                                       Huffman codes ]

    Data compression.

                                       [load balancing, interrupt handling]

    Operating systems.

    Graph searching.

                                       Dijkstra's algorithm, Prim's algorithm ]

    Number theory.

                                       sum of powers ]

    Spam filtering.

                                       Bayesian spam filter ]
                                       online median in data stream ]

    Statistics.
```


priority = length of
 best known path

8	4	7			
1	5	6			
3 2					
 rioritv	= "dist	tance"			

oriority = "distance" to goal board

priority = event time

Priority queue: elementary implementations

Unordered list. Store keys in a linked list.

Performance. Insert takes $\Theta(1)$ time; Delete-Max takes $\Theta(n)$ time.

Priority queue: elementary implementations

Ordered array. Store keys in an array in ascending (or descending) order.

ordered array implementation of a MaxPQ

Priority queues: quiz 1

What are the worst-case running times for INSERT and DELETE-MAX, respectively, in a MaxPQ implemented with an ordered array?

ignore array resizing

- **A.** $\Theta(1)$ and $\Theta(n)$
- **B.** $\Theta(1)$ and $\Theta(\log n)$
- C. $\Theta(\log n)$ and $\Theta(1)$
- **D.** $\Theta(n)$ and $\Theta(1)$

ordered array implementation of a MaxPQ

Priority queue: implementations cost summary

Elementary implementations. Either Insert or Delete-Max takes $\Theta(n)$ time.

implementation	INSERT	DELETE-MAX
unordered list	1	n
ordered array	n	1
goal	$\log n$	$\log n$

order of growth of running time for priority queue with n items

Challenge. Implement both INSERT and DELETE-MAX efficiently.

Solution. "Somewhat-ordered" array.

Complete binary tree

Binary tree. Empty or node with links to two disjoint binary trees (left and right subtrees).

Complete tree. Every level (except possibly the last) is completely filled; the last level is filled from left to right.

complete binary tree with n = 16 nodes (height = 4)

Property. Height of complete binary tree with n nodes is $\lfloor \log_2 n \rfloor$.

Pf. As you successively add nodes, height increases (by 1) only when n is a power of 2.

A complete binary tree in nature (of height 4)

Binary heap: representation

Binary heap. Array representation of a heap-ordered complete binary tree.

Heap-ordered tree.

- Keys in nodes.
- Child's key no larger than parent's key.

Array representation.

- Indices start at 1.
- Take nodes in level order.
- No explicit links!

Consider the node at index k in a binary heap. Which Java expression produces the index of its parent?

- **A.** (k 1) / 2
- **B.** k / 2
- C. (k + 1) / 2
- **D.** 2 * k

Binary heap: properties

Proposition. Largest key is at index 1, which is root of binary tree.

Proposition. Can use array indices to move up or down tree.

- Parent of key at index k is at index k/2.
- Children of key at index k are at indices 2*k and 2*k + 1.

	0	1	2	3	4	5	6	7	8	9	10	11
a[]	_	Т	S	R	Р	N	O	Α	E	I	Н	G

Binary heap demo

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

heap ordered

T P R N H O A E I G

Binary heap: promotion

Scenario. Key in node becomes larger than key in parent's node.

To eliminate the violation:

- Exchange key in child node with key in parent node.
- Repeat until heap order restored.

```
private void swim(int k)
{
    while (k > 1 && less(k/2, k))
    {
        exch(k, k/2);
        k = k/2;
    }
    parent of node at k is at k/2
}
```


Peter principle. Node promoted to level of incompetence.

Binary heap: insertion

Insert. Add node at end in bottom level; then, swim it up.

Cost. At most $1 + \log_2 n$ compares.

```
public void insert(Key x)
{
    pq[++n] = x;
    swim(n);
}
```


Binary heap: demotion

Scenario. Key in node becomes smaller than one (or both) of keys in childrens' nodes.

To eliminate the violation:

why not smaller child?

- Exchange key in parent node with key in larger child's node.
- Repeat until heap order restored.

Power struggle. Better subordinate promoted.

Binary heap: delete the maximum

Delete max. Exchange root with node at end; then, sink it down.

Cost. At most $2 \log_2 n$ compares.

Binary heap: Java implementation

```
public class MaxPQ<Key extends Comparable<Key>>
  private Key[] a;
  private int n;
                                                                  fixed capacity
  public MaxPQ(int capacity)
                                                                  (for simplicity)
   { a = (Key[]) new Comparable[capacity+1]; }
  public boolean isEmpty()
  { return n == 0; }
                                                                  PQ ops
  public void insert(Key key) // see previous code
  public Key delMax()  // see previous code
  private void swim(int k)  // see previous code
                                                                  heap helper functions
  private void sink(int k)  // see previous code
  private boolean less(int i, int j)
  { return a[i].compareTo(a[j]) < 0; }
                                                                  array helper functions
  private void exch(int i, int j)
     Key temp = a[i]; a[i] = a[j]; a[j] = temp;
```

Priority queue: implementations cost summary

Goal. Implement both INSERT and DELETE-MAX in $\Theta(\log n)$ time.

implementation	INSERT	DELETE-MAX	Max
unordered list	1	n	n
ordered array	n	1	1
goal	$\log n$	$\log n$	1

order of growth of running time for priority queue with n items

Binary heap: considerations

Underflow and overflow.

- Underflow: throw exception if deleting from empty PQ.
- Overflow: add no-arg constructor and use resizing array.

Minimum-oriented priority queue.

- Replace less() with greater().
- Implement greater().

Other operations.

- Remove an arbitrary item.
- Change the priority of an item.

can implement efficiently with sink() and swim()
[stay tuned for Prim/Dijkstra]

leads to $O(\log n)$

amortized time per op

(how to make worst case?)

Immutability of keys.

- · Assumption: client does not change keys while they're on the PQ.
- Best practice: use immutable keys.

PRIORITY QUEUE WITH DELETE-RANDOM

Goal. Design an efficient data structure to support the following API:

- INSERT: insert a key.
- Delete-Max: return and remove a largest key.
- SAMPLE: return a random key.
- DELETE-RANDOM: return and remove a random key.

DELETE-RANDOM FROM A BINARY HEAP

Goal. Delete a random key from a binary heap in $O(\log n)$ time.

DELETE-RANDOM FROM A BINARY HEAP

Goal. Delete a random key from a binary heap in $O(\log n)$ time.

same trick as with dequeue()

in a randomized queue

Solution.

- Pick a random index r between 1 and n.
- Perform exch(r, n--).
- Perform sink(r).

DELETE-RANDOM FROM A BINARY HEAP

Goal. Delete a random key from a binary heap in $O(\log n)$ time.

Solution.

- Pick a random index r between 1 and n.
- Perform exch(r, n--).
- Or perform swim(r).

Multiway heaps

Multiway heaps.

- Complete *d*-way tree.
- Child's key no larger than parent's key.

Property. Height of complete *d*-way tree on *n* nodes is $\sim \log_d n$.

Property. Children of key at index k are at indices 3k - 1, 3k, and 3k + 1.

3-way heap

Priority queues: quiz 4

In the worst case, how many compares to INSERT and DELETE-MAX in a d-way heap as function of both n and d?

A. $\sim \log_d n$ and $\sim \log_d n$

B. $\sim \log_d n$ and $\sim d \log_d n$

C. $\sim d \log_d n$ and $\sim \log_d n$

D. $\sim d \log_d n$ and $\sim d \log_d n$

Priority queue: implementation cost summary

implementation	INSERT	DELETE-MAX	MAX	
unordered list	1	n	\boldsymbol{n}	
ordered array	n	1	1	
binary heap	log n	log n	1	
d-ary heap	$\log_d n$	$d \log_d n$	1	—— sweet spot: $d = 4$
Fibonacci	1	log n	1	—— see COS 423
impossible	1	1	1	—— why impossible?

order-of-growth of running time for priority queue with n items

What are the properties of this sorting algorithm?

```
public void sort(String[] a)
{
   int n = a.length;
   MinPQ<String> pq = new MinPQ<String>();

   for (int i = 0; i < n; i++)
        pq.insert(a[i]);

   for (int i = 0; i < n; i++)
        a[i] = pq.delMin();
}</pre>
```

- A. $\Theta(n \log n)$ compares in the worst case.
- B. In-place.
- C. Stable.
- **D.** All of the above.

Heapsort

Basic plan for in-place sort.

- View input array as a complete binary tree. ← we'll assume 1-indexed for now
- Heap construction: build a max-oriented heap.
- Sortdown: repeatedly remove the maximum key.

keys in arbitrary order build max heap (in place) (i

Heapsort: top-down heap construction

Top-down heap construction. Insert keys into a max heap, one at a time.

```
for (int k = 1; k <= n; k++)
   swim(a, k);
```

Invariants. After calling swim(a, k),

- a[1..k] is a max heap.
- a[k+1..n] are untouched.

after call to swim(a, k) k = 68 M 9 P 10 L 11 E X S T O E R A M P L E

Heapsort: sortdown

Second pass.

- Remove the maximum, one at a time.
- Leave in array (instead of nulling out).

Invariants. After calling sink(a, 1, k),

- a[1..k-1] is a max heap.
- a[k..n] are in final sorted order.

Heapsort: Java implementation

```
public class HeapTopDown
   public static void sort(Comparable[] a)
     // top-down heap construction
      int n = a.length;
      for (int k = 1; k <= n; k--)
         swim(a, k);
     // sortdown
      int k = n;
     while (k > 1)
         exch(a, 1, k--);
         sink(a, 1, k);
```

https://algs4.cs.princeton.edu/24pq/HeapTopDown.java.html

```
private static void sink(Comparable[] a, int k, int n)
{    /* as before */ }

private static void swim(Comparable[] a, int k)
{    /* as before */ }

but make static
(and pass arguments)

private static boolean less(Comparable[] a, int i, int j)
{    /* as before */ }

private static void exch(Object[] a, int i, int j)
{    /* as before */ }

but convert from 1-based indexing to 0-base indexing
```

Heapsort: mathematical analysis

Proposition. Heapsort uses only $\Theta(1)$ extra space.

Proposition. Heapsort makes $\leq 3 n \log_2 n$ compares (and $\leq 2 n \log_2 n$ exchanges).

- Top-down heap construction: $\leq n \log_2 n$ compares (and exchanges).
- Sortdown: $\leq 2n \log_2 n$ compares (and $\leq n \log_2 n$ exchanges).

Bottom-up heap construction. [see book] Successively building larger heap from smaller ones. Proposition. Makes $\leq 2 n$ compares (and $\leq n$ exchanges).

Heapsort: context

Significance. In-place sorting algorithm with $\Theta(n \log n)$ worst-case.

- Mergesort: no, $\Theta(n)$ extra space. \longleftarrow in-place merge possible, not practical
- Quicksort: no, $\Theta(n^2)$ time in worst case. \longleftarrow $\Theta(n \log n)$ worst-case quicksort possible, not practical
- Heapsort: yes!

Bottom line. Heapsort is optimal for both time and space, but:

- Inner loop longer than quicksort's.
- Makes poor use of cache.
- Not stable.

can be improved using advanced caching tricks

Introsort

Goal. As fast as quicksort in practice; $\Theta(n \log n)$ worst case; in place.

Introsort.

- Run quicksort.
- Cutoff to heapsort if function-call stack depth exceeds $2 \log_2 n$.
- Cutoff to insertion sort for $n \le 16$.

In the wild. C++ STL, Microsoft .NET Framework, Go.

Sorting algorithms: summary

	inplace?	stable?	best	average	worst	remarks
selection	✓		$\frac{1}{2} n^2$	$\frac{1}{2} n^2$	$\frac{1}{2} n^2$	n exchanges
insertion	✓	✓	n	$\frac{1}{4} n^2$	½ n ²	use for small n or partially ordered
merge		•	$\frac{1}{2} n \log_2 n$	$n \log_2 n$	$n \log_2 n$	$\Theta(n \log n)$ guarantee; stable
timsort		✓	n	$n \log_2 n$	$n \log_2 n$	improves mergesort when pre-existing order
quick	✓		$n \log_2 n$	2 <i>n</i> ln <i>n</i>	$\frac{1}{2} n^2$	$\Theta(n \log n)$ probabilistic guarantee; fastest in practice
3-way quick	✓		n	2 <i>n</i> ln <i>n</i>	$\frac{1}{2} n^2$	improves quicksort when duplicate keys
heap	•		3 n	$2 n \log_2 n$	$2 n \log_2 n$	$\Theta(n \log n)$ guarantee; in-place
?	•	✓	n	$n \log_2 n$	$n \log_2 n$	holy sorting grail

© Copyright 2021 Robert Sedgewick and Kevin Wayne