

2.3 QuICKSORT

- quicksort
- selection
- duplicate keys
- system sorts

Robert Sedgewick I Kevin Wayne
https://algs4.cs.princeton.edu

Two classic sorting algorithms: mergesort and quicksort

Critical components in the world's computational infrastructure.

- Full scientific understanding of their properties has enabled us to develop them into practical system sorts.
- Quicksort honored as one of top 10 algorithms of $20^{\text {th }}$ century in science and engineering.

Mergesort. [last lecture]

Quicksort. [this lecture]
采
(C 园
a
JS

Quicksort t-shirt

k) $l 0=1+1$; else return a[i]; \} return a[lol; \}
npareTo $(w)<0) ;\}$ private static void exch(Object [] a,
orivate static boolean issorted (Comparable[] a) \{ return
ted (Comparable [] a, int 10 , int hi) $\{$ for (int $i=10+1$ ted (Comparable[] a, int 0 , int hi) $\{$ for (int $i=10+1 ;$
1 true; $\}$ private static void show(Comparable [] a) $\{$ for (in oublic static void main(String[] args) \{ String[] a = StdIn. re.
 ublic class Quick \{ public static void sort Comparable [] a) \{ S static void sort (Comparable [1 a. int 10, int hi) \{ if (hi $<=10$ (a, lo, j-1); sort(a,
ak; while (less(v, a[-
ic static Comparable st
ected element out of bc
$\begin{array}{ll}\text { le }[] \text { a, int } k \text {) }\{\text { if (} \\ \text { ition(a, lo, hi) ; if (i) } & \text { dRandom. shuffle(a): }\end{array}$
oolean less(Comparable v, comparable $\mathbf{- 1 ;}$) else if ($i<k$) k lo
int j) $\{0$ object swap $=a[i]$; $a[i]=a[j]$; $a[j]=$ swap
in

n isSorted(a, 0, a.length - 1); ; private static boolean is
1 ; i $<=$ hi; it+) if (less(a[i], a[i-1])) return false; re ${ }^{*}$ $1 ; i<=h i ; i++)$ if (less(ali], a[i-1])) return false;
int $i=0 ; i<a . l e n g t h ; i++)\{$ Stdout.println(a[i]);
 ring) Quick.select(a, i); StdOut.println(ith); \} ndom.shuffle(a); sort(a, 0, a. length - 1); \} pris
eturn; int $j=$ partition(a, lo, hi); sort (a, is
tatic int partition(Cor
\{ while (less (a[$[++\mathrm{i}$]
$a, 1, j) ;\} \operatorname{exch}(a$, lo,
th) $\{$ throw new Runtim
$0, \mathrm{hi}=\mathrm{a}$. length -1 ; mpareTo $(w)<0)$; \} private stati orivate static boolean isSorted (ted (Comparable [] a, int lo, int ? true; \} private static void sh oublic static void main(String [
or (int $i=0 ; i<a$ ength; $i+$ orlic class Quick \{ public stati static void sort(Comparable[] a,
(a, lo, $i-1$); sort(a, $i+1$, hi);

CS @ Princeton

A brief history

Tony Hoare.

- Invented quicksort in 1960 to translate Russian into English.
- Learned Algol 60 (and recursion) to implement it.

Bob Sedgewick.

- Refined and popularized quicksort in 1970s.
- Analyzed many versions of quicksort.

2.3 QUICKSORT

- quicksort
-selection
- duplicate keys
- system sorts

Robert Sedgewick | Kevin Wayn

https://algs4.cs.princeton.edu

Quicksort overview

Step 1. Shuffle the array.
Step 2. Partition the array so that, for some index j :

- Entry $a[j]$ is in place. \qquad "pivot" or "partitioning item"
- No larger entry to the left of j .
- No smaller entry to the right of j .

Step 3. Sort each subarray recursively.

Quicksort partitioning demo

Repeat until i and j pointers cross:

- Scan i from left to right so long as (a[i] < $a[10]$).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].

K	R	A	T	E	L	E	P	U	I	M	Q	C	X	0	S
\uparrow	\uparrow														\uparrow
10	i														j

Quicksort partitioning demo

Repeat until i and j pointers cross:

- Scan ifrom left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].

When pointers cross. Exchange a[1o] with $\mathrm{a}[\mathrm{j}]$.

The music of quicksort partitioning (by Brad Lyon)

Quicksort partitioning: Java implementation

```
private static int partition(Comparable[] a, int lo, int hi)
{
    int i = lo, j = hi+1;
    while (true)
    {
        while (less(a[++i], a[lo]))
            if (i == hi) break;
        while (less(a[lo], a[--j]))
            if (j == lo) break;
        if (i >= j) break; check if pointers cross
        exch(a, i, j); swap
    }
    exch(a, lo, j);
    return j;
}
    find item on left to swap
                find item on right to swap
```

before

during

after

Quicksort quiz 2

In the worst case, how many compares and exchanges does partition() make to partition a subarray of length n ?
A. $\sim^{1 / 2 n}$ and $\sim 1 / 2 n$
B. $\sim 1 / 2 n$ and $\sim n$
C. $\sim n$ and $\sim 1 / 2 n$
D. $\sim n$ and $\sim n$

```
M A B C D E V W X Y Z
```


Quicksort: Java implementation

```
public class Quick
{
    private static int partition(Comparable[] a, int lo, int hi)
    { /* see previous slide */ }
    public static void sort(Comparable[] a)
    {
        StdRandom.shuff7e(a); «
        sort(a, 0, a.length - 1);
        (stay tuned)
    }
    private static void sort(Comparable[] a, int lo, int hi)
    {
        if (hi <= lo) return;
        int j = partition(a, lo, hi);
        sort(a, lo, j-1);
        sort(a, j+1, hi);
    }
}
```

Quicksort trace

10	j	hi	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
initial values			Q	U	I	C	K	S	0	R	T	E	X	A	M	P	L	E
random shuffle			K	R	A	T	E	L	E	P	U	I	M	Q	C	X	0	S
0	5	15	E	C	A	I	E	K	L	P	U	T	M	Q	R	X	0	S
0	3	4	E	C	A	E	I	K	L	P	U	T	M	Q	R	X	0	S
0	2	2	A	C	E	E	I	K	L	P	U	T	M	Q	R	X	0	S
0	0	1	A	C	E	E	I	K	L	p	U	T	M	Q	R	X	0	S
1		1	A	C	E	E	I	K	L	P	U	T	M	Q	R	X	0	S
44		4	A	C	E	E	I	K	L	P	U	T	M	Q	R	X	0	S
6	6	15	A	C	E	E	I	K	L	P	U	T	M	Q	R	X	0	S
no partition 7	9	15	A	C	E	E	I	K	L	M	0	P	T	Q	R	X	U	S
$\begin{gathered} \text { for subarrays } \\ \text { of size } 1 \end{gathered} \longrightarrow 7$	7	8	A	C	E	E	I	K	L	M	0	P	T	Q	R	X	U	S
		8	A	C	E	E	I	K	L	M	0	P	T	Q	R	X	U	S
\10	13	15	A	C	E	E	I	K	L	M	0	P	S	Q	R	T	U	X
	12	12	A	C	E	E	I	K	L	M	0	P	R	Q	S	T	U	X
10	11	11	A	C	E	E	I	K	L	M	0	P	Q	R	S	T	U	x
${ }^{1} 10$		10	A	C	E	E	I	K	L	M	0	P	Q	R	S	T	U	x
14	14	15	A	C	E	E	I	K	L	M	0	P	Q	R	S	T	U	X
15		15	A	C	E	E	I	K	L	M	0	P	Q	R	S	T	U	X
result			A	C	E	E	I	K	L	M	0	P	Q	R	S	T	U	X
Quicksort trace (array contents after each partition)																		

Quicksort animation

50 random items

A algorithm position
in order
current subarray
not in order
http://www.sorting-algorithms.com/quick-sort

Quicksort: implementation details

Partitioning in-place. Using an extra array makes partitioning easier (and stable), but it is not worth the cost.

Loop termination. Terminating the loop is more subtle than it appears.

Equal keys. Handling duplicate keys is trickier that it appears. [stay tuned]

Preserving randomness. Shuffling is needed for performance guarantee.
Equivalent alternative. Pick a random pivot in each subarray.

Quicksort: empirical analysis

Running time estimates:

- Home PC executes 10^{8} compares/second.
- Supercomputer executes 10^{12} compares/second.

	insertion sort (n^{2})			mergesort (n log n)			quicksort (n log n)		
computer	thousand	million	billion	thousand	million	billion	thousand	million	billion
home	instant	2.8 hours	317 years	instant	1 second	18 min	instant	0.6 sec	12 min
super	instant	1 second	1 week	instant	instant	instant	instant	instant	instant

Lesson 1. Good algorithms are better than supercomputers.
Lesson 2. Great algorithms are better than good ones.

Quicksort quiz 3

Why is quicksort typically faster than mergesort in practice?
A. Fewer compares.
B. Fewer array acceses.
C. Both A and B.
D. Neither A nor B.

Quicksort: worst-case analysis

Worst case. Number of compares is $\sim 1 / 2 n^{2}$.

Quicksort: worst-case analysis

Worst case. Number of compares is $\sim 1 / 2 n^{2}$.

Good news. Worst case for quicksort is mostly irrelevant in practice.

- Exponentially small chance of occurring.
(unless bug in shuffling or no shuffling)
- More likely that computer is struck by lightning bolt during execution.

Quicksort: probabilistic analysis

Proposition. The expected number of compares C_{n} to quicksort an array of n distinct keys is $\sim 2 n \ln n$ (and the number of exchanges is $\sim 1 / 3 n \ln n$).

Recall. Any algorithm with the following structure takes $\Theta(n \log n)$ time.

```
public static void f(int n)
{
    if (n == 0) return;
    f(n/2); L
    f(n/2); « of half the size
    linear(\mathbf{n}); « do \Theta(n) work
}
```

Intuition. Each partitioning step divides the problem into two subproblems, each of approximately one-half the size.

probabilistically "close enough"

Quicksort: probabilistic analysis

Proposition. The expected number of compares C_{n} to quicksort an array of n distinct keys is $\sim 2 n \ln n$ (and the number of exchanges is $\sim 1 / 3 n \ln n$).

Pf. C_{n} satisfies the recurrence $C_{0}=C_{1}=0$ and for $n \geq 2$:

$$
\begin{aligned}
& \stackrel{\substack{\text { partitioning } \\
\downarrow \\
C_{n}}}{(n+1)}+\left(\frac{C_{0}+C_{n-1}}{n}\right)+\left(\frac{\stackrel{\rightharpoonup}{C_{1}}+\stackrel{\text { right }}{\downarrow}}{n}\right)+\ldots+\left(\frac{C_{n-2}}{n}\right) \\
& \text { Multiply both sides by } n \text { and collect terms: }
\end{aligned}
$$

$$
n C_{n}=n(n+1)+2\left(C_{0}+C_{1}+\ldots+C_{n-1}\right)
$$

- Subtract from this equation the same equation for $n-1$:

$$
n C_{n}-(n-1) C_{n-1}=2 n+2 C_{n-1}
$$

- Rearrange terms and divide by $n(n+1)$:

$$
\frac{C_{n}}{n+1}=\frac{C_{n-1}}{n}+\frac{2}{n+1}
$$

Quicksort: probabilistic analysis

- Repeatedly apply previous equation:

$$
\begin{aligned}
\frac{C_{n}}{n+1} & =\frac{C_{n-1}}{n}+\frac{2}{n+1} \\
& =\frac{C_{n-2}}{n-1}+\frac{2}{n}+\frac{2}{n+1} \longleftarrow \text { substitute previous equation } \\
& =\frac{C_{n-3}}{n-2}+\frac{2}{n-1}+\frac{2}{n}+\frac{2}{n+1} \\
& =\frac{2}{3}+\frac{2}{4}+\frac{2}{5}+\ldots+\frac{2}{n+1}
\end{aligned}
$$

- Approximate sum by an integral:

$$
\begin{aligned}
C_{n} & =2(n+1)\left(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\ldots+\frac{1}{n+1}\right) \\
& \sim 2(n+1) \int_{3}^{n+1} \frac{1}{x} d x
\end{aligned}
$$

- Finally, the desired result:

$$
C_{n} \sim 2(n+1) \ln n \approx 1.39 n \lg n
$$

Quicksort properties

Quicksort analysis summary.

- Expected number of compares is $\sim 1.39 n \log _{2} n$.

[standard deviation is $\sim 0.65 n$]

- Expected number of exchanges is $\sim 0.23 n \log _{2} n$. \longleftarrow fewer array accesses than mergesort
- Min number of compares is $\sim n \log _{2} n$. \longleftarrow never fewer than mergesort
- Max number of compares is $\sim 1 / 2 n^{2}$. \longleftarrow but never happens

Context. Quicksort is a (Las Vegas) randomized algorithm.

- Guaranteed to be correct.
- Running time depends on outcomes of random coin flips (shuffle).

Quicksort properties

Proposition. Quicksort is an in-place sorting algorithm.

- Partitioning: $\Theta(1)$ extra space.
- Function-call stack: $\Theta(\log n)$ extra space (with high probability).
can guarantee $\Theta(\log n)$ depth by recurring on smaller subarray before larger subarray (but this requires using an explicit stack)

Proposition. Quicksort is not stable.
Pf. [by counterexample]

\mathbf{i}	\mathbf{j}	0	1	2	3
		$\mathrm{~B}_{1}$	C_{1}	C_{2}	$\mathrm{~A}_{1}$
1	3	$\mathrm{~B}_{1}$	C_{1}	C_{2}	$\mathrm{~A}_{1}$
1	3	$\mathrm{~B}_{1}$	$\mathrm{~A}_{1}$	C_{2}	C_{1}
0	1	$\mathrm{~A}_{1}$	$\mathrm{~B}_{1}$	C_{2}	C_{1}

Quicksort: practical improvements

Insertion sort small subarrays.

- Even quicksort has too much overhead for tiny subarrays.
- Cutoff to insertion sort for ≈ 10 items.

```
private static void sort(Comparable[] a, int lo, int hi)
{
    if (hi <= 1o + CUTOFF - 1)
    {
        Insertion.sort(a, 1o, hi);
        return;
    }
    int j = partition(a, lo, hi);
    sort(a, 1o, j-1);
    sort(a, j+1, hi)
}
```


Quicksort: practical improvements

Median of sample.

- Best choice of pivot item = median.
- Estimate true median by taking median of sample.
- Median-of-3 (random) items.
~ $12 / 7 n \ln n$ compares (14% fewer)
~ $12 / 35 n \ln n$ exchanges (3% more)

```
private static void sort(Comparable[] a, int lo, int hi)
{
    if (hi <= lo) return;
    int median = median0f3(a, 1o, 1o + (hi - 1o)/2, hi);
    swap(a, 1o, median);
    int j = partition(a, 1o, hi);
    sort(a, 10, j-1);
    sort(a, j+1, hi);
}
```


2.3 QuICKSORT

- quicksort
- selection

Algorithms

Robert Sedgewick I Kevin Wayne

- dupticate keys
- system sorts
https://algs4.cs.princeton.edu

Selection

Goal. Given an array of n items, find item of rank k.
Ex. Min $(k=0)$, max $(k=n-1)$, median $(k=n / 2)$.

Applications.

- Order statistics.
- Find the "top k."

Use complexity theory as a guide.

- Easy $O(n \log n)$ algorithm. How?
- Easy $O(n)$ algorithm for $k=0,1,2$. How?
- Easy $\Omega(n)$ lower bound. Why?

Which is true?

- $O(n)$ algorithm? [is there a linear-time algorithm?]
- $\Omega(n \log n)$ lower bound? [is selection as hard as sorting?]

Quickselect demo

Partition array so that for some j

- Entry a[j] is in place.
- No larger entry to the left of j .
- No smaller entry to the right of j .

Repeat in one subarray, depending on j; stop when j equals k.
select element of rank $k=5$

0	1	2	3	4	5	6	7	8	9	10	11
12	13	14									
50	21	28	65	39	59	56	22	95	12	90	53

Quickselect

Partition array so that for some j :

- Entry $a[j]$ is in place.
- No larger entry to the left of j.
- No smaller entry to the right of j.

Repeat in one subarray, depending on j; stop when j equals k.

```
public static Comparable select(Comparable[] a, int k)
{
    StdRandom.shuffle(a);
    int lo = 0, hi = a.length - 1;
    while (hi > lo)
    {
        int j = partition(a, 1o, hi);
        if (j < k) 1o = j + 1;
        else if (j > k) hi = j - 1;
        else return a[k];
    }
    return a[k];
}
```


Quickselect: probabilistic analysis

Proposition. The expected number of compares C_{n} to quickselect the item of rank k in an array of length n is $\Theta(n)$.

```
probabilistically "close enough"
```

Intuition. Each partitioning step approximately halves the length of the array.
Recall. Any algorithm with the following structure takes $\Theta(n)$ time.

```
public static void f(int n)
{
    if (n == 0) return;
    linear(n); «}\mathrm{ do }\Theta(n)\mathrm{ work
    n+n/2+n/4+\ldots+1~2n
```

Careful analysis yields: $\quad C_{n} \sim 2 n+2 k \ln (n / k)+2(n-k) \ln (n /(n-k))$

$$
\begin{aligned}
& \leq(2+2 \ln 2) n \\
& \approx 3.38 n
\end{aligned} \quad \longleftarrow \max \text { occurs for median }(k=n / 2)
$$

Theoretical context for selection

Q. Compare-based selection algorithm that makes $\Theta(n)$ compares in the worst case?
A. Yes! [ingenious divide-and-conquer]

Time Bounds for Selection*
Manuel Blum, Robert W. Floyd, Vaughan Pratt Ronald L. Rivest, and Robert E. Tarjan

Department of Computer Science, Stanford University, Stanford, California 94305
Received November 14, 1972

The number of comparisons required to select the i-th smallest of n numbers is shown to be at most a linear function of n by analysis of a new selection algorithm-PICK. Specifically, no more than $5.4305 n$ comparisons are ever required. This bound is improved for extreme values of i, and a new lower bound on the requisite number of comparisons is also proved

Caveat. Constants are high \Rightarrow not used in practice.

Use theory as a guide.

- Open problem: practical algorithm that makes $\Theta(n)$ compares in the worst case.
- Until one is discovered, use quickselect (if you don't need a full sort).

2.3 QuICKSORT

Algorithms

Robert Sedgewick | Kevin Wayne
https://algs4.cs.princeton.edu

Duplicate keys

Often, purpose of sort is to bring items with equal keys together.

- Sort population by age.
- Remove duplicates from mailing list.
- Sort job applicants by college attended.

Typical characteristics of such applications.

- Huge array.
- Small number of key values.

Quicksort quiz 4

When partitioning, how to handle keys equal to pivot?

C. Either A or B.

War story (system sort in C)

Bug. A qsort() call in C that should have taken seconds was taking minutes to sort a random array of 0 s and 1 s .

Duplicate keys: partitioning strategies

Bad. Don't stop scans on equal keys.
[$\Theta\left(n^{2}\right)$ compares when all keys equal]
$B A A B A B B C C C \quad A A A A A A A A A A A$

Good. Stop scans on equal keys.
[$\sim n \log _{2} n$ compares when all keys equal]
B A A B A BCCBCB AAAAAAAAAAA

Better. Put all equal keys in place. How?
[$\sim n$ compares when all keys equal]
A A A B B B BCCC AAAAAAAAAAA

Dutch National Flag Problem

Problem. [Edsger Dijkstra] Given an array of n buckets, each containing a red, white, or blue pebble, sort them by color.

Operations allowed.

- $\operatorname{swap}(i, j)$: swap the pebble in bucket i with the pebble in bucket j.
- getColor((i) : determine the color of the pebble in bucket i.

Performance requirements.

- Exactly n calls to getColor().
- At most n calls to $\operatorname{swap}()$.
- $\Theta(1)$ extra space.

3-way partitioning

Goal. Use pivot $v=a[1 o]$ to partition array into three parts so that:

- Red: smaller entries to the left of 1 t .
- White: equal entries between 1 t and gt .
- Blue: larger entries to the right of gt.

- Let $\mathrm{v}=\mathrm{a}$ [lo] be pivot.
- Scan i from left to right and compare a[i] to v.
- less: exchange a[i] with a[7t]; increment both $7 t$ and i
- greater: exchange a[i] with a[gt]; decrement gt
- equal: increment i

P_{1}	D	B	X	W	P_{2}	P_{3}	V	P_{4}	A	P_{5}	C	Y	Z

- Let $\mathrm{v}=\mathrm{a}$ [lo] be pivot.
- Scan i from left to right and compare a[i] to v.
- less: exchange a[i] with a[7t]; increment both $7 t$ and i
- greater: exchange a[i] with a[gt]; decrement gt
- equal: increment i

3-way quicksort: Java implementation

```
private static void sort(Comparable[] a, int lo, int hi)
{
    if (hi <= 10) return;
    int 1t = 1o, gt = hi;
    Comparable v = a[lo];
    int i = 1o + 1;
    while (i <= gt)
    {
        int cmp = a[i].compareTo(v);
        if (cmp < 0) exch(a, 1t++, i++);
        else if (cmp > 0) exch(a, i, gt--);
        else i++;
    }
    sort(a, 10, 1t - 1);
    sort(a, gt + 1, hi);
}
```


Quicksort quiz 5

What is the worst-case number of compares to 3 -way quicksort an array of length n containing only 7 distinct values?
A. $\Theta(n)$
B. $\Theta(n \log n)$
C. $\Theta\left(n^{2}\right)$
D. $\Theta\left(n^{7}\right)$
input

sorted

Sorting summary

	inplace?	stable?	best	average	worst	remarks
selection	\checkmark		$1 / 2 n^{2}$	$1 / 2 n^{2}$	$1 / 2 n^{2}$	n exchanges
insertion	\checkmark	\checkmark	n	$1 / 4 n^{2}$	$1 / 2 n^{2}$	use for small n or partially sorted arrays
merge		\checkmark	$1 / 2 n \log _{2} n$	$n \log _{2} n$	$n \log _{2} n$	$\Theta(n \log n)$ guarantee; stable
timsort		\checkmark	n	$n \log _{2} n$	$n \log _{2} n$	improves mergesort when pre-existing order
quick	\checkmark		$n \log _{2} n$	$2 n \ln n$	$1 / 2 n^{2}$	$\Theta(n \log n)$ probabilistic guarantee; fastest in practice
3-way quick	\checkmark		n	$2 n \ln n$	$1 / 2 n^{2}$	improves quicksort when duplicate keys
?	\checkmark	\checkmark	n	$n \log _{2} n$	$n \log _{2} n$	holy sorting grail

2.3 QuICKSORT

- quicksort
\checkmark selectión
- dupticate keys
- system sorts

Robert Sedgewick I Kevin Wayne
https://algs4.cs.princeton.edu

Sorting applications

Sorting algorithms are essential in a broad variety of applications:

- Sort a list of names.
- Organize an MP3 library.
- Display Google PageRank results.
- List RSS feed in reverse chronological order.
- Find the median.
- Identify statistical outliers.
problems become easy once
- Binary search in a database.

> items are in sorted order

- Find duplicates in a mailing list.
- Data compression.
- Computer graphics.
- Computational biology.
- Load balancing on a parallel computer.
...

Engineering a system sort (in 1990s)

Bentley-Mcllroy quicksort.

- Cutoff to insertion sort for small subarrays.
- Pivot selection: median of 3 or Tukey's ninther.
- Partitioning scheme: Bentley-Mcllroy 3-way partitioning.

Engineering a Sort Function

JON L. BENTLEY
M. DOUGLAS McILroy

AT\&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, U.S.A

SUMMARY

We recount the history of a new qsort function for a C library. Our function is clearer, faster and more robust than existing sorts. It chooses partitioning elements by a new sampling scheme; it partitions by a robust than existing sorts. It chooses partitioning elements by a new sampling scheme;, it partitions by a assessed with timing and debugging testbeds, and with a program to certify performance. The design
techniques apply in domains beyond sorting.

In the wild. C, C++, Java 6,

A Java mailing list post (Yaroslavskiy, September 2009)

Replacement of quicksort in java.util.Arrays with new dual-pivot quicksort

He110 A11,

I'd like to share with you new Dual-Pivot Quicksort which is faster than the known implementations (theoretically and experimental). I'd like to propose to replace the JDK's Quicksort implementation by new one.

The new Dual-Pivot Quicksort uses *two* pivots elements in this manner:

1. Pick an elements $P 1, P 2$, called pivots from the array.
2. Assume that P1 <= P2, otherwise swap it.
3. Reorder the array into three parts: those less than the smaller pivot, those larger than the larger pivot, and in between are those elements between (or equal to) the two pivots
4. Recursively sort the sub-arrays.

The invariant of the Dual-Pivot Quicksort is:
$[<\mathrm{P} 1 \mid \mathrm{P} 1<=\&<=\mathrm{P} 2\}>\mathrm{P} 2]$

Another Java mailing list post (Yaroslavskiy-Bloch-Bentley)

Replacement of quicksort in java.util.Arrays with new dual-pivot quicksort

Date: Thu, 29 Oct 2009 11:19:39 +0000
Subject: Replace quicksort in java.util.Arrays with dual-pivot implementation

Changeset: b05abb410c52
Author: alanb
Date: 2009-10-29 11:18 +0000
URL: http://hg.openjdk.java.net/jdk7/t1/jdk/rev/b05abb410c52

6880672: Replace quicksort in java.util.Arrays with dual-pivot implementation Reviewed-by: jjb
Contributed-by: vladimir.yaroslavskiy at sun.com, joshua.bloch at google.com, jbentley at avaya.com
! src/share/classes/java/util/Arrays.java

+ src/share/classes/java/uti1/Dua1PivotQuicksort.java
https:/ / mail.openjdk.java.net/pipermail/compiler-dev/2009-October.txt

Dual-pivot quicksort

Use two pivots p_{1} and p_{2} and partition into three subarrays:

- Keys less than p_{1}.
- Keys between p_{1} and p_{2}.
- Keys greater than p_{2}.

$<p_{1}$	p_{1}	$\geq p_{1}$ and $\leq p_{2}$	p_{2}	$>p_{2}$
\uparrow	\uparrow		\uparrow	\uparrow
10	7 t		gt	hi

Recursively sort three subarrays (skip middle subarray if $p_{1}=p_{2}$).
degenerates to Dijkstra's 3-way partitioning

In the wild. Java 8, Java 11, Python unstable sort, Android, ...

SYSTEM SORT

Suppose you are the lead architect of a new programming language.
Which sorting algorithm(s) would you use for the system sort? Defend your answer.

System sorts in Java 8 and Java 11

Arrays.sort() and Arrays.paralle1Sort().

- Has one method for Comparable objects.
- Has an overloaded method for each primitive type.
- Has an overloaded method for use with a Comparator.
- Has overloaded methods for sorting subarrays.

Algorithms.

- Timsort for reference types.
- Dual-pivot quicksort for primitive types.
- Parallel mergesort for Arrays. paral1e1Sort().
Q. Why use different algorithms for primitive and reference types?

Bottom line. Use the system sort!

© Copyright 2021 Robert Sedgewick and Kevin Wayne

