
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 9/6/21 2:37 PM

1.5 UNION–FIND

‣ union–find data type

‣ quick-find

‣ quick-union

‣ weighted quick-union

‣ path compression

‣ percolation
https://algs4.cs.princeton.edu

last lecture

https://algs4.cs.princeton.edu

Steps to develop a usable algorithm to solve a computational problem.

2

Subtext of today’s lecture (and this course)

efficient?

yes

model the
problem

design an
algorithm

understand
why not

solve the
problem

try again

no

1.5 UNION–FIND

‣ union–find data type

‣ quick-find

‣ quick-union

‣ weighted quick-union

‣ path compression

‣ percolation

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Disjoint sets. A collection of sets containing n elements, with each element in exactly one set.

Leader. Each set designates one of its elements as “leader” to uniquely identify the set.

Find. Return the leader of the set containing element p.

Union. Merge the set containing element p with the set containing element q.

Simplifying assumption. The n elements are named 0, 1, …, n – 1.

4

Union–find data type

{ 0 } { 1, 4, 5 } { 2, 3, 6, 7 }

8 elements, 3 disjoint sets

{ 0 } { 1, 2, 3, 4, 5, 6, 7 }

2 disjoint sets

union(2, 5)
leader is 4

find(1) = 4
find(4) = 4
find(5) = 4

no restriction on which element
(but leader of set can’t change unless set changes)

leader is 6leader is 0 leader is 6

Disjoint sets can represent:

・Clusters of conducting sites in a composite system.

・Connected components in a graph.

・Interlinked friends in a social network.

・Interconnected devices in a mobile network.

・Equivalent variable names in a Fortran program.

・Contiguous pixels of the same color in a digital image.

・Adjoining stones of the same color in the game of Hex.

5

Union–find data type: applications

see Assignment 1
(Percolation)

6

Goal. Design an efficient union–find data type.

・Number of elements n can be huge.

・Number of operations m can be huge.

・The union() and find() operations can be intermixed.

Union–find data type: API

 public class UF

UF(int n) initialize with n singleton sets (0 to n – 1)

void union(int p, int q) merge sets containing elements p and q

int find(int p) return the leader of set containing element p

1.5 UNION–FIND

‣ union–find data type

‣ quick-find

‣ quick-union

‣ weighted quick-union

‣ path compression

‣ percolation

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Quick-find

Data structure.

・Integer array leader[] of length n.

・Interpretation: leader[p] is the leader of the set containing element p.

Q. How to implement find(p)?

A. Easy, just return leader[p].

8

0 1

0 1

1 8

2 3

8 0

4 5

0 1

6 7

8 8

8 9

leader[]

{ 0, 5, 6 } { 1, 2, 7 } { 3, 4, 8, 9 }

10 elements, 3 disjoint sets

leader[i] = 0 leader[i] = 1 leader[i] = 8

Quick-find

Data structure.

・Integer array leader[] of length n.

・Interpretation: leader[p] is the leader of the set containing element p.

Q. How to implement union(p, q)?

A. Change all array entries whose value is leader[p] to leader[q].

9

0 1

0 1

1 8

2 3

8 0

4 5

0 1

6 7

8 8

8 9

leader[]

union(6, 1)

problem: many entries can change

1 1

0 1

1 8

2 3

8 1

4 5

1 1

6 7

8 8

8 9

or vice versa

public class QuickFindUF
{
 private int[] leader;

 public QuickFindUF(int n)
 {
 leader = new int[n];
 for (int i = 0; i < n; i++)
 leader[i] = i;
 }

 public int find(int p)
 { return leader[p]; }

 public void union(int p, int q)
 {
 int pLeader = leader[p];
 int qLeader = leader[q];
 for (int i = 0; i < leader.length; i++)
 if (leader[i] == pLeader)
 leader[i] = qLeader;
 }

}

Quick-find: Java implementation

10

set leader of each element to itself

change all array entries whose value
is leader[p] to leader[q]

return the leader of p

https://algs4.cs.princeton.edu/15uf/QuickFindUF.java.html

(1 array access)

(n array accesses)

(≥ n array accesses)

https://algs4.cs.princeton.edu/15uf/QuickFindUF.java.html

Cost model. Number of array accesses (for read or write).

Union is too expensive. Processing any sequence of m union() operations

on n elements takes ≥ mn array accesses.

Ex. Performing 109 union() operations on 109 elements might take 30 years.

11

Quick-find is too slow

algorithm initialize union find

quick-find n n 1

worst-case number of array accesses (ignoring leading coefficient)

quadratic in input size!

1.5 UNION–FIND

‣ union–find data type

‣ quick-find

‣ quick-union

‣ weighted quick-union

‣ path compression

‣ percolation

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Data structure: Forest-of-trees.

・Interpretation: elements in one rooted tree correspond to one set.

・Integer array parent[] of length n, where parent[i] is parent of i in tree.

Q. How to implement find(p) operation?

A. Use tree roots as leaders ⇒ return root of tree containing p.

parent of 3 is 4

0 1

0 1

9 4

2 3

9 6

4 5

6 7

6 7

8 9

8 9

13

Quick-union

5

70 1 6

2

{ 0 } { 1 } { 2, 3, 4, 9 } { 5, 6 } { 7 } { 8 }

10 elements, 6 disjoint sets (6 trees)

find(i) = 9

root of 3 is 9

9

p 33

4

8
parent[]

Union–find quiz 1

Data structure: Forest-of-trees.

・Interpretation: elements in one rooted tree correspond to one set.

・Integer array parent[] of length n, where parent[i] is parent of i in tree.

Which is not a valid way to implement union(3, 5) ?

A. Set parent[6] = 9.

B. Set parent[9] = 6.

C. Set parent[2] = parent[3] = parent[4] = parent[9] = 6.

D. Set parent[3] = 5.

14

0 1

0 1

9 4

2 3

9 6

4 5

6 7

6 7

8 9

8 9

5

70 1 8

p

q

6

52

9

4

3

parent[]

3 would no longer be in same tree as 2, 4, and 9

Data structure: Forest-of-trees.

・Interpretation: elements in one rooted tree correspond to one set.

・Integer array parent[] of length n, where parent[i] is parent of i in tree.

Q. How to implement union(p, q)?

15

Quick-union

0 1

0 1

9 4

2 3

9 6

4 5

6 7

6 7

8 9

8 9

5

70 1 8

p

q

union(3, 5)

A. Set parent[p’s root] = q’s root.

6

52

9

4

3

or vice versa

Data structure: Forest-of-trees.

・Interpretation: elements in one rooted tree correspond to one set.

・Integer array parent[] of length n, where parent[i] is parent of i in tree.

Q. How to implement union(p, q)?

16

Quick-union

0 1

0 1

9 4

2 3

9 6

4 5

6 7

6 7

8 9

8 9

only one entry changes

70 1 8

p

q

0 1

0 1

9 4

2 3

9 6

4 5

6 7

6 7

8 6

8 9

union(3, 5)

A. Set parent[p’s root] = q’s root.

2

9

4

3

6

5

or vice versa

Quick-union demo

17

Quick-union: Java implementation

public class QuickUnionUF
{
 private int[] parent;

 public QuickUnionUF(int n)
 {
 parent = new int[n];
 for (int i = 0; i < n; i++)
 parent[i] = i;
 }

 public int find(int p)
 {
 while (p != parent[p])
 p = parent[p];
 return p;
 }

 public void union(int p, int q)
 {
 int root1 = find(p);
 int root2 = find(q);
 parent[root1] = root2;
 }
}

set parent of each element to itself
(to create forest of n singleton trees)

follow parent pointers until reach root;
return resulting root

link root of p to root of q

18
https://algs4.cs.princeton.edu/15uf/QuickUnionUF.java.html

https://algs4.cs.princeton.edu/15uf/QuickUnionUF.java.html

Cost model. Number of array accesses (for read or write).

Running time.

・ union() takes constant time, given two roots.

・ find() takes time proportional to depth of node in tree.

19

Quick-union analysis

0

2 2 22

1 111

3 x

depth(x) = 3

x

worst-case depth = n-1

0

1

2

3

4

5

6

7

8

9

Cost model. Number of array accesses (for read or write).

Running time.

・ union() takes constant time, given two roots.

・ find() takes time proportional to depth of node in tree.

Too expensive (if trees get tall). Processing some sequences of m

union() and find() operations on n elements takes ≥ mn array accesses.

20

Quick-union analysis

algorithm initialize union find

quick-find n n 1

quick-union n n n

worst-case number of array accesses (ignoring leading coefficient)

quadratic in input size!

1.5 UNION–FIND

‣ union–find data type

‣ quick-find

‣ quick-union

‣ weighted quick-union

‣ path compression

‣ percolation

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

When linking two trees, which strategy is most effective?

A. Link the root of the smaller tree to the root of the larger tree.

B. Link the root of the larger tree to the root of the smaller tree.

C. Flip a coin; randomly choose between A and B.

D. All of the above.

(size = 16, height = 4)

Union–find quiz 2

22

smaller tree
(size = 6, height = 2)

larger tree

・Modify quick-union to avoid tall trees.

・Keep track of size of each tree = number of elements.

・Always link root of smaller tree to root of larger tree.

smaller
tree

larger
tree

r
2

r
1

smaller
tree

larger
tree

r
2

r
1

smaller
tree

larger
tree

smaller
tree

larger
tree

Weighted quick-union

weighted

quick-union

always puts the
smaller tree lower

might put the
larger tree lower

r
2

r
1

r
2

r
1

smaller
tree

larger
tree

r
2

r
1

smaller
tree

larger
tree

r
2

r
1

smaller
tree

larger
tree

smaller
tree

larger
tree

Weighted quick-union

weighted

quick-union

always puts the
smaller tree lower

might put the
larger tree lower

r
2

r
1

r
2

r
1

23

Weighted quick-union (link-by-size)

fine alternative: link-by-height

Weighted quick-union: Java implementation

Data structure. Same as quick-union, but maintain extra array size[i]

to count number of elements in the tree rooted at i, initially 1.

・FIND: identical to quick-union.

・UNION: link root of smaller tree to root of larger tree; update size[].

24

public void union(int p, int q)
{
 int root1 = find(p);
 int root2 = find(q);
 if (root1 == root2) return;

 if (size[root1] >= size[root2])
 { int temp = root1; root1 = root2; root2 = temp; }

 parent[root1] = root2;
 size[root2] += size[root1];

}

afterwards, root1 is
root of smaller tree

link root of smaller tree
to root of larger tree

https://algs4.cs.princeton.edu/15uf/WeightedQuickUnionUF.java.html

update size

https://algs4.cs.princeton.edu/15uf/WeightedQuickUnionUF.java.html
https://algs4.cs.princeton.edu/15uf/WeightedQuickUnionUF.java.html

Quick-union vs. weighted quick-union: larger example

25

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

Proposition. Depth of any node x ≤ log2 n.

26

Weighted quick-union analysis

 n = 10
depth(x) = 3 ≤ log2 n

0

2 2 22

1 111

depth 3 x

Weighted quick-union analysis

Proposition. Depth of any node x ≤ log2 n.

Pf.

・Depth of x does not change unless root of tree T1 containing x is linked to

the root of a larger tree T2, forming a new tree T3.

・when this happens:

– depth of x increases by exactly 1

– size of tree containing x at least doubles

because size(T3) = size(T1) + size(T2)

 ≥ 2 𐄂 size(T1).

27

 T2

T1
x

can happen at most log2 n times. Why?

log2 n

1 → 2 → 4 → 8 → 16 → … → n

28

Proposition. Depth of any node x ≤ log2 n.

Running time.

・ union() takes constant time, given two roots.

・ find() takes time proportional to depth of node in tree.

Weighted quick-union analysis

algorithm initialize union find

quick-find n n 1

quick-union n n n

weighted quick-union n log n log n

worst-case number of array accesses (ignoring leading coefficient)

in this course, log mean logarithm
for some constant base

1.5 UNION–FIND

‣ union–find data type

‣ quick-find

‣ quick-union

‣ weighted quick-union

‣ path compression

‣ percolation

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

30

Path compression

1211

9

10

8

6

x

root

p

7

3

2

54

0

1

Path compression. Make every examined node point directly to its root.

31

Path compression

10

8

6

1211

9

root

x

p

7

3

2

54

0

1

Path compression. Make every examined node point directly to its root.

32

Path compression

7

3

10

8

6

1211

9

root

x

p

2

54

0

1

Path compression. Make every examined node point directly to its root.

33

Path compression

10

8

6

root

x

p

1211

9

7

3 2

54

0

1

Path compression. Make every examined node point directly to its root.

Bottom line. Now, union() and find() have the side effect of compressing the tree.

34

Path compression

10

8

6

x

root

p

1211

9

7

3 2

54

0

1

Path compression. Make every examined node point directly to its root.

Path compaction: Java implementation

Path compression. Make every examined node point directly to its root.

Implementation. Add second loop to find() to update parent[] of each examined node.

Path halving. Make every other examined node point to its grandparent.

Implementation. No need for a second loop.

In practice. No reason not to! Keeps tree almost completely flat.

35

public int find(int p)
{
 while (p != parent[p])
 {
 // path halving
 parent[p] = parent[parent[p]];
 p = parent[p];
 }
 return p;
}

only one extra line of code!

https://algs4.cs.princeton.edu/15uf/QuickUnionPathHalvingUF.java.html

https://algs4.cs.princeton.edu/15uf/QuickUnionPathHalvingUF.java.html
https://algs4.cs.princeton.edu/15uf/WeightedQuickUnionUF.java.html

Key point. Weighted quick-union (and/or path compaction) makes it possible

to solve problems that could not otherwise be addressed.

Ex. [109 union() and find() operations with 109 elements]

・Efficient algorithm reduces time from 30 years to 6 seconds.

・Supercomputer wouldn’t help much.

36

order of growth for m ≥ n union–find operations on a set of n elements

algorithm worst-case time

quick-find m n

quick-union m n

weighted quick-union m log n

quick-union + path compaction m log n

weighted quick-union + path compaction m α(m, n)

Summary

inverse “Ackermann function”
(ask Tarjan and see COS 423)

ask Tarjan

© Copyright 2021 Robert Sedgewick and Kevin Wayne

37

“ The goal is to come up with algorithms that you can apply

 in practice that run fast, as well as being simple, beautiful,

 and analyzable. ” — Bob Tarjan

