1.5 Union–Find

- union–find data type
- quick-find
- quick-union
- weighted quick-union

See precept
Steps to develop a usable algorithm to solve a computational problem.

1. **model the problem**
2. **design an algorithm**
3. **efficient?**
 - yes: **solve the problem**
 - no: **try again**

4. **understand why not**
1.5 Union–Find

- union–find data type
- quick-find
- quick-union
- weighted quick-union
- applications
Union–find data type

Disjoint sets. A collection of sets containing n elements, with each element in exactly one set.

Leader. Each set designates one if its elements as “leader” to uniquely identify the set.

Find. Return the leader of the set containing element p.

Union. Merge the set containing element p with the set containing element q.

Simplifying assumption. The n elements are named 0, 1, ..., $n - 1$.

Example:

8 elements, 3 disjoint sets

leader is 4

\[
\begin{align*}
\text{find}(1) &= 4 \\
\text{find}(4) &= 4 \\
\text{find}(5) &= 4
\end{align*}
\]

\{ 0 \} \{ 1, 4, 5 \} \{ 2, 3, 6, 7 \}

union(2, 5)

\{ 0 \} \{ 1, 2, 3, 4, 5, 6, 7 \}

leader is 6

2 disjoint sets
Disjoint sets can represent:

- Connected components in a graph.
- Interlinked friends in a social network.
- Interconnected devices in a mobile network.
- Equivalent variable names in a Fortran program.
- Clusters of conducting sites in a composite system.
- Contiguous pixels of the same color in a digital image.
- Adjoining stones of the same color in the game of Hex.
Union–find data type: API

Goal. Design an efficient union–find data type.

- Number of elements n can be huge.
- Number of operations m can be huge.
- Union and find operations can be intermixed.

```java
public class UF {
    UF(int n) {
        // initialize with n singleton sets (0 to n – 1)
    }
    void union(int p, int q) {
        // merge sets containing elements p and q
    }
    int find(int p) {
        // return the leader of set containing element p
    }
}
```
1.5 Union–Find

- union–find data type
- quick-find
- quick-union
- weighted quick-union
- applications
Quick-find

Data structure.
- Integer array `leader[]` of length n.
- Interpretation: `leader[p]` is the leader of the set containing element p.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>leader[]</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

- `leader[i] = 0` → `{ 0, 5, 6 }
- `leader[i] = 1` → `{ 1, 2, 7 }
- `leader[i] = 8` → `{ 3, 4, 8, 9 }

3 disjoint sets

Q. How to implement `find(p)`?
A. Easy, just return `leader[p]`.
Quick-find

Data structure.
- Integer array `leader[]` of length `n`.
- Interpretation: `leader[p]` is the leader of the set containing element `p`.

```
union(6, 1)

0  1  2  3  4  5  6  7  8  9
leader[]  1  1  1  8  8  1  1  1  8  8
```

Problem: many values can change

Q. How to implement `union(p, q)`?

A. Change all array entries with `leader[p]` to `leader[q]`.

or vice versa
public class QuickFindUF
{
 private int[] leader;

 public QuickFindUF(int n)
 {
 leader = new int[n];
 for (int i = 0; i < n; i++)
 leader[i] = i;
 }

 public int find(int p)
 { return leader[p]; }

 public void union(int p, int q)
 {
 int pLeader = leader[p];
 int qLeader = leader[q];
 for (int i = 0; i < leader.length; i++)
 if (leader[i] == pLeader)
 leader[i] = qLeader;
 }
}

https://algs4.cs.princeton.edu/15uf/QuickFindUF.java.html
Quick-find is too slow

Cost model. Number of array accesses (for read or write).

<table>
<thead>
<tr>
<th>algorithm</th>
<th>initialize</th>
<th>union</th>
<th>find</th>
</tr>
</thead>
<tbody>
<tr>
<td>quick-find</td>
<td>n</td>
<td>n</td>
<td>1</td>
</tr>
</tbody>
</table>

number of array accesses (ignoring leading coefficient)

Union is too expensive. Processing a sequence of m union operations on n elements takes $\geq mn$ array accesses.

quadratic in input size!
1.5 Union–Find

- union–find data type
- quick-find
- quick-union
- weighted quick-union
- applications
Quick-union

Data structure: Forest-of-trees.

- **Interpretation:** elements in one rooted tree correspond to one set.
- **Integer array** `parent[]` of length `n`, where `parent[i]` is parent of `i` in tree.

<table>
<thead>
<tr>
<th>parent[]</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

- **find(i)** = `9`

- **6 disjoint sets (6 trees)**

```
{ 0 } { 1 } { 2, 3, 4, 9 } { 5, 6 } { 7 } { 8 }
```

Q. How to implement find(p) operation?

A. Use tree roots as leaders \(\Rightarrow\) return root of tree containing `p`.
Data structure: Forest-of-trees.
- Interpretation: elements in one rooted tree correspond to one set.
- Integer array `parent[]` of length `n`, where `parent[i]` is parent of `i` in tree.

Which is not a valid way to implement `union(3, 5)`?

Quick-union

Data structure: Forest-of-trees.
- Interpretation: elements in one rooted tree correspond to one set.
- Integer array parent[] of length n, where parent[i] is parent of i in tree.

union(3, 5)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>4</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

Q. How to implement union(p, q)?
A. Set parent[p's root] = q's root. ← or vice versa
Quick-union

Data structure: Forest-of-trees.

- Interpretation: elements in one rooted tree correspond to one set.
- Integer array parent[] of length n, where parent[i] is parent of i in tree.

```
union(3, 5)
```

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>9</td>
<td>4</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

Q. How to implement `union(p, q)`?

A. Set `parent[p's root] = q's root`. or vice versa

only one value changes
Quick-union demo
Quick-union: Java implementation

```java
public class QuickUnionUF
{
    private int[] parent;

    public QuickUnionUF(int n)
    {
        parent = new int[n];
        for (int i = 0; i < n; i++)
            parent[i] = i;
    }

    public int find(int p)
    {
        while (p != parent[p])
            p = parent[p];
        return p;
    }

    public void union(int p, int q)
    {
        int root1 = find(p);
        int root2 = find(q);
        parent[root1] = root2;
    }
}
```

- set parent of each element to itself (to create forest of n singleton trees)
- follow parent pointers until reach root
- link root of p to root of q

https://algs4.cs.princeton.edu/15uf/QuickUnionUF.java.html
Quick-union analysis

Cost model. Number of array accesses (for read or write).

Running time.
- Union: takes constant time, given two roots.
- Find: takes time proportional to depth of node in tree.

![Diagram](attachment:image.png)

\[\text{depth}(x) = 3 \]

worst-case depth = n−1
Quick-union analysis

Cost model. Number of array accesses (for read or write).

Running time.
• Union: takes constant time, given two roots.
• Find: takes time proportional to depth of node in tree.

<table>
<thead>
<tr>
<th>algorithm</th>
<th>initialize</th>
<th>union</th>
<th>find</th>
</tr>
</thead>
<tbody>
<tr>
<td>quick-find</td>
<td>n</td>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td>quick-union</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
</tbody>
</table>

worst-case number of array accesses (ignoring leading coefficient)

Too expensive (if trees get tall). Processing some sequences of m union and find operations on n elements takes $\geq mn$ array accesses.
1.5 **Union–Find**

- union–find data type
- quick-find
- quick-union
- weighted quick-union
- applications
When linking two trees, which strategy is most effective?

A. Link the root of the *smaller* tree to the root of the *larger* tree.

B. Link the root of the *larger* tree to the root of the *smaller* tree.

C. Flip a coin; randomly choose between A and B.
Weighted quick-union (link-by-size)

- Modify quick-union to avoid tall trees.
- Keep track of size of each tree = number of elements.
- Always link root of smaller tree to root of larger tree.

reasonable alternative: link-by-height
Weighted quick-union: Java implementation

Data structure. Same as quick-union, but maintain extra array size[i] to count number of elements in the tree rooted at i, initially 1.

- Find: identical to quick-union.
- Union: link root of smaller tree to root of larger tree; update size[].

```java
public void union(int p, int q)
{
    int root1 = find(p);
    int root2 = find(q);
    if (root1 == root2) return;
    if (size[root1] >= size[root2])
    {
        int temp = root1; root1 = root2; root2 = temp;
    }

    parent[root1] = root2;
    size[root2] += size[root1];
}
```

https://algs4.cs.princeton.edu/15uf/WeightedQuickUnionUF.java.html
Quick-union vs. weighted quick-union: larger example

quick-union

weighted
Weighted quick-union analysis

Proposition. Depth of any node $x \leq \log_2 n$.

$n = 10$

$\text{depth}(x) = 3 \leq \log_2 n$
Weighted quick-union analysis

Proposition. Depth of any node $x \leq \log_2 n$.

Pf.
- Depth of x does not change unless root of tree T_1 containing x is linked to the root of a larger tree T_2, forming a new tree T_3.
- In this case:
 - depth of x increases by exactly 1
 - size of tree containing x at least doubles because $\text{size}(T_3) = \text{size}(T_1) + \text{size}(T_2) \geq 2 \times \text{size}(T_1)$.

![Diagram](image)

- can happen at most $\log_2 n$ times. Why?
 - $1 \rightarrow 2 \rightarrow 4 \rightarrow 8 \rightarrow 16 \rightarrow \cdots \rightarrow n$
 - $\log_2 n$
Weighted quick-union analysis

Proposition. Depth of any node $x \leq \log_2 n$.

Running time.
- Union: takes constant time, given two roots.
- Find: takes time proportional to depth of node in tree.

<table>
<thead>
<tr>
<th>algorithm</th>
<th>initialize</th>
<th>union</th>
<th>find</th>
</tr>
</thead>
<tbody>
<tr>
<td>quick-find</td>
<td>n</td>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td>quick-union</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>weighted quick-union</td>
<td>n</td>
<td>$\log n$</td>
<td>$\log n$</td>
</tr>
</tbody>
</table>

worst-case number of array accesses (ignoring leading coefficients)
Summary

Key point. Weighted quick-union makes it possible to solve problems that could not otherwise be addressed.

<table>
<thead>
<tr>
<th>algorithm</th>
<th>worst-case time</th>
</tr>
</thead>
<tbody>
<tr>
<td>quick-find</td>
<td>(m \times n)</td>
</tr>
<tr>
<td>quick-union</td>
<td>(m \times n)</td>
</tr>
<tr>
<td>weighted quick-union</td>
<td>(m \log n)</td>
</tr>
<tr>
<td>QU + path compression</td>
<td>(m \log n)</td>
</tr>
<tr>
<td>weighted QU + path compression</td>
<td>(m \alpha(n))</td>
</tr>
</tbody>
</table>

Ex. [10⁹ union–find operations on 10⁹ elements]

- Weighted quick-union reduces run time from 30 years to 6 seconds.
- Supercomputer won’t help much; good algorithm enables solution.