
COS 226 Algorithms and Data Structures Spring 2021

Midterm Solutions

1. Initialization. Don’t forget to do this.

2. Memory.

(a) 32

Each Pair object uses 32 bytes of memory:

• 16 bytes of object overhead

• 4 bytes for the integer key

• 8 bytes for the double value

• 4 bytes of padding (to make memory usage a multiple of 8)

(b) ∼ 40n

A SortedArray object uses ∼ 8m + 32n bytes of memory when the array pairs[] is of
length m and has n non-null entries.

• 16 bytes of object overhead

• 4 bytes for the integer n

• 4 bytes of padding

• 8 bytes for the reference to pairs[]

• 24 + 8m bytes for the array of references of length m.

• 32n bytes for the n Pair objects.
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When the array is full, m = n, which is ∼ 40n.

(c) ∼ 64n

When the array is one-quarter full, m = 4n, which is ∼ 64n.
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3. Five sorting algorithms.

(3.1) selection sort after 12 iterations

(3.2) mergesort just before the last call to merge()

(3.3) insertion sort after 16 iterations

(3.4) quicksort after first partitioning step

(3.5) heapsort immediately after the heap construction phase

4. Analysis of algorithms.

(4.1) ∼ 1
2n

2

Selection sort makes ∼ 1
2n

2 compares to sort any array of length n.

(4.2) ∼ 1
8n

2

Let’s consider the even and odd iterations of insertion sort separately.

• In the odd iterations (when we are inserting the integers 1, 2, . . . , n), there are no
exchanges because each integer is larger than every element to its left.

• In the even iterations (when we are inserting the 0s), the 0 must be exchanged with
all of the positive integers to its left.

So, the total number of exchanges is 0 + 1 + 2 + . . . + (n/2− 1) ∼ 1
8n

2.
The number of compares in insertion sort is always within an additive factor of n of the
number of exchanges.

(4.3) ∼ 3
4n log2 n

In each merge, the left subarray contains n/4 0s followed by n/4 smaller integers; and
the right subarray contains n/4 0s followed by n/4 larger integers. Here is an example
when n = 4:

0 0 0 0 1 2 3 4 0 0 0 0 5 6 7 8

Merging two subarrays of this form involves ∼ 3
4n compares because the left subarray is

exhausted before taking any of the integers from the right subarray. This is true at every
level in the recursion.

(4.4) Θ(n), O(n), O(n log n), O(n2)

f(n) = n + 1
2n + 1

4n + 1
8n + . . . + 1 = 2n− 1.

Big O and big Theta notations discard both lower-order terms and the leading coefficient.
The main difference is that big O notation includes functions that grow more slowly. So,
O(n log n) includes not only functions like 2n log2 n and 1

2n log2 n, but also 2n − 1 and
1
8

√
n.
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5. Predecessor search in a BST.

C D C E F D C

This is identical to the floor() function from lecture, except for when the search key is equal
to the key in the node, in which case you should find the predecessor in the left subtree.

private Key pred(Node x, Key k, Key champ) {

if (x == null) return champ;

int cmp = k.compareTo(x.key);

if (cmp < 0) return pred(x.left, k, champ);

else if (cmp > 0) return pred(x.right, k, x.key);

else return pred(x.left, k, champ);

}

6. Mystery key.

(6.1) 65, 70

The constraints of the binary heap imply that 60 ≤ x ≤ 80.

(6.2) 0, 6, 7

When it is time for E to be inserted, the linear-probing hash table will have the following
structure:
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Suppose that the keys are inserted in the order 
A, B, C, D, x, F, G

B A C D

linear-probing hash table

1 2 3 4 5 6 70

keys[]

(6.3) (55, 65), (75, 55)

The constraints of the k-d tree imply that 50 ≤ x ≤ 80 and that 40 ≤ y ≤ 70.

7. Why did Java do that?

(7.1) X O X O O X

Like mergesort, in the worst case, Timsort makes ∼ n log2 n compares and uses Θ(n)
extra space. Timsort is optimized for input arrays that have a small number of runs
(either in increasing or decreasing order); it makes Θ(n) compares in such cases.

(7.2) X X X O O X

A doubly linked list supports adding/removing from the front or back in Θ(1) time, as in
a Deque. Accessing the element at index n/2 takes Θ(n) time. Each iterator uses Θ(1)
extra memory—it only needs to maintain a reference to the current node in the iteration.
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8. Triple sum.

The main idea is to put the integers in c[] into a hash table and then iterate over all pairs
of elements a[i] and b[j] and check whether -(a[i] + b[j]) is in the hash table. This
solution takes O(n2) time on typical inputs and uses Θ(n) extra space.

Here’s the corresponding Java code.

public boolean hasTripleSum(int n, long[] a, long[] b, long[] c) {

// add elements of c[] to hash table

// key = integer, value = array index (but not used here)

HashMap<Long, Integer> st = new HashMap<>();

for (int k = 0; k < n; k++)

st.put(c[k], k);

// for each a[i] and b[j], check whether it sums to 0 with an integer from c[]

for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)

if (st.containsKey(-(a[i] + b[j])))

return true;

return false;

}

Here’s an alternative solution that uses sorting and a carefully orchestrated search. This
solution takes Θ(n2) time in the worst case and uses only Θ(1) extra memory.

public static boolean hasTripleSum(int n, long[] a, long[] b, long[] c) {

Heap.sort(a); // assume overloaded method for sorting long[]

Heap.sort(b);

// for each c[k], check whether it sums to 0 with an integer from a[] and b[]

for (int k = 0; k < n; k++) {

int i = 0, j = n - 1;

while (i < n && j >= 0) {

if (a[i] + b[j] + c[k] > 0) j--;

else if (a[i] + b[j] + c[k] < 0) i++;

else return true;

}

}

return false;

}
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9. Multiset data type.

Half-credit solution. Create a RedBlackBST<Long, Integer> where the key is the integer
in the multiset and the corresponding value is the number of times that integer appears.

public class MultisetHalfCredit {

private RedBlackBST<Long, Integer> st = new RedBlackBST<>();

// add k to the multiset

public void add(long k) {

if (st.contains(k)) st.put(k, st.get(k) + 1);

else st.put(k, 1);

}

// number of integers in the multiset equal to k

public int count(String item) {

if (st.contains(k)) return st.get(k);

else return 0;

}

// number of integers in the multiset strictly less than k

public int rank(int k) {

int sum = 0;

for (long i : st.keys())

if (i < k) sum += st.get(i);

else break;

return sum;

}

}

The add() and count() methods take Θ(log n) time in the worst case. However, the rank() method
takes Θ(n) time in the worst case.
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Full-credit solution. The main idea to achieve a Θ(log n) performance guarantee for rank() is
to re-implement a red–black BST, keeping the frequency counts in the nodes and modifying the subtree
counts so that they account for duplicate integers.

For example, here a red–black BST corresponding to a multiset with the 10 integers 10, 20, 20, 30,
30, 30, 50, 60, 60, 80.
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The specific modifications to RedBlackBST are as follows:

• Value field. Replace the value field with a frequency count field.

• Add method. Same as put() in a red–black BST except that if the key to be added is not in the
BST, it sets the frequency in the node to 1; if the key is already in the BST, it increments the
frequency in the corresponding node by 1.

• Count method. Same as get() in a BST except that it returns the frequency of the key in the
BST, and 0 otherwise.

• Rank method. Same as rank() in a BST except to account for duplicate keys. Specifically, if the
search key is greater than the key in the node, it should return

size(x.left) + rank(key, x.right) + x.frequency;

instead of

size(x.left) + rank(key, x.right) + 1;

• Maintaining subtree counts. Same as in add(), rotateLeft(), and rotateRight() except to
account for duplicate keys. Specifically, when updating the subtree counts, use

x.size = size(x.left) + size(x.right) + x.frequency;

instead of

x.size = size(x.left) + size(x.right) + 1;
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For reference, here’s the relevant Java code. All instance methods take Θ(log n) time in the worst case.

public class Multiset {

private Node root;

private class Node {

private long key; // key

private int frequency; // number of occurrences of key

private Node left, right; // links to left and right subtrees

private boolean color; // color of parent link

private int size; // subtree count

}

private Node add(Node x, long key) {

if (x == null) return new Node(key, RED);

if (key < x.key) x.left = add(x.left, key);

else if (key > x.key) x.right = add(x.right, key);

else x.frequency++;

if (isRed(x.right) && !isRed(x.left)) x = rotateLeft(x);

if (isRed(x.left) && isRed(x.left.left)) x = rotateRight(x);

if (isRed(x.left) && isRed(x.right)) flipColors(x);

x.size = size(x.left) + size(x.right) + x.frequency;

return x;

}

public int count(long key) {

Node x = root;

while (x != null) {

if (key < x.key) x = x.left;

else if (key > x.key) x = x.right;

else return x.frequency;

}

return 0;

}

public int rank(long key) {

return rank(key, root);

}

// number of keys less than key in the subtree rooted at x

private int rank(long key, Node x) {

if (x == null) return 0;

if (key < x.key) return rank(key, x.left);

else if (key > x.key) return size(x.left) + rank(key, x.right) + x.frequency;

else return size(x.left);

}

}
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Alternative full-credit solution. Modify the RedBlackBST to allow duplicate keys. The
key modifications are as follows:

• Value field. No need for the value field.

• Add method. Same as put() in a red–black BST except that if the key to be added is
equal to the key in the node, insert it in the left subtree.

• Rank method. Same as rank() in a BST except that if the search key is equal to the
key in the node, return the rank in the left subtree.

• Count method. Not easy to do efficiently directly because the equal keys can be scattered
throughout the BST. But, it’s easy to implement count() efficiently with two calls to
rank().

public int count(int k) {

return rank(k + 1) - rank(k);

}

This solution uses Θ(n) space, where n is the number of integers in the multiset. The other
solutions uses Θ(m) space, where m is the number of distinct integers in the multiset.


