
COS 226 Algorithms and Data Structures Fall 2019

Midterm

This exam has 10 questions (including question 0) worth a total of 55 points. You have 80 minutes.
This exam is preprocessed by a computer when grading, so please write darkly and write your
answers inside the designated spaces.

Policies. The exam is closed book, except that you are allowed to use a one-page cheatsheet
(8.5-by-11 paper, one side, in your own handwriting). Electronic devices are prohibited.

Discussing this exam. Discussing the contents of this exam before solutions have been posted
is a violation of the Honor Code.

This exam. Do not remove this exam from this room. In the space provided, write your name and
NetID. Also, mark your exam room and the precept in which you are officially registered. Finally,
write and sign the Honor Code pledge. You may fill in this information now.

Name:

NetID:

Course: COS 226

Exam room: Friend 101 Friend 003 McDonnell A02 Other

#
P01 P02 P04 P05 P07 P08 P09 P10

#Precept:

“I pledge my honor that I will not violate the Honor Code during this examination.”

Signature

2 PRINCETON UNIVERSITY

0. Initialization. (1 point)

In the space provided on the front of the exam, write your name and NetID; mark your exam
room and the precept in which you are officially registered; write and sign the Honor Code
pledge.

1. Memory. (4 points)

Suppose that you implement a priority queue (of integer keys) using a 4-way heap (d = 4)
with the following data type:

public class MultiWayHeap {

private final int d; // branching factor

private Node root; // root of d-way heap

private int n; // number of keys in d-way heap

private class Node {

private final int key; // key

private Node parent; // link to parent

private Node[] children; // links to d children

private Node(int key) {

this.key = key;

children = new Node[d];

}

}

...

}

Use the 64-bit memory cost model from lecture and the textbook to answer the following
questions.

(a) How much memory does each Node object in a 4-way heap use? Count all memory
allocated when a Node object is constructed.

bytes

(b) How much memory does a MultiWayHeap object for a 4-way heap use as a function of
the number n of integer keys in the data structure? Count all referenced memory. Use
tilde notation to simplify your answer.

∼ bytes

COS 226 MIDTERM, FALL 2019 3

2. Five sorting algorithms. (5 points)

The leftmost column contains an array of 24 integers to be sorted; the rightmost column
contains the integers in sorted order; the other columns are the contents of the array at some
intermediate step during one of the five sorting algorithms listed below. Match each algorithm
by writing its number in the box under the corresponding column. Use each number once.

37 11 18 11 11 60 11

79 18 30 18 18 58 18

11 22 11 28 22 56 22

50 28 22 37 28 57 28

39 30 28 39 30 30 30

66 37 37 50 37 37 37

78 39 78 56 39 39 39

18 50 66 66 50 50 50

80 56 80 78 56 11 56

28 57 39 79 64 22 57

56 58 56 80 66 28 58

98 60 98 98 78 18 60

92 92 92 22 79 61 61

22 66 50 30 80 63 63

30 78 79 57 92 64 64

64 64 64 58 98 66 66

86 86 86 60 86 78 78

57 79 57 61 57 79 79

83 83 83 63 83 80 80

63 63 63 64 63 81 81

60 98 60 81 60 83 83

61 61 61 83 61 86 86

58 80 58 86 58 92 92

81 81 81 92 81 98 98

0 6

(0) Original array

(1) Selection sort

(2) Insertion sort

(3) Mergesort
(top-down)

(4) Quicksort
(standard, no shuffle)

(5) Heapsort

(6) Sorted array

4 PRINCETON UNIVERSITY

3. Quicksort and analysis. (5 points)

Consider the following drop-in replacement for Hoare’s 2-way partitioning algorithm.

// rearrange a[lo..hi] so that a[lo..j-1] <= a[j] <= a[j+1..hi]

private int partition(Comparable[] a, int lo, int hi) {

int j = lo;

for (int i = lo + 1; i <= hi; i++)

if (less(a[i], a[lo])) // strictly less

exch(a, i, ++j);

exch(a, lo, j);

return j;

}

(a) What is the maximum number of calls to less() during one call to partition()? Write
your answer as a function of the length n of the subarray to be partitioned and use tilde
notation to simplify.

∼ calls to less()

(b) Repeat the previous question, but for the maximum number of calls to exch().

∼ calls to exch()

(c) Which of the following are properties of this partition() method? Mark all that apply.

∎ ◻ ◻ ◻ ◻

correct stable not stable in-place not in-place

(d) Suppose that the partition() method defined above is used in a standard recursive
version of quicksort. How many total calls to less() would this version of quicksort
make to sort an array of n equal keys? Use tilde notation to simplify your answer.

∼ calls to less()

COS 226 MIDTERM, FALL 2019 5

4. Red–black BSTs. (4 points)

Suppose that you insert the key 21 into the following left-leaning red–black BST:

Midterm, Fall 2019

4

2

8

12

6

red link

20

16

14

24

18

10

22

Give the sequence of 4 elementary operations (color flips and rotations) that result.

operation 1 operation 2 operation 3 operation 4

key

color flip # # # #
rotate left # # # #

rotate right # # # #

Examples of color flips and rotations (for reference):

Midterm, Spring 2017

8

3
8 rotate right

T3
3

8
3 rotate left

3

81

3 color flip

T2T1

T1

T3T2

T1 T2 T3 T4

3

81

T1 T2 T3 T4Midterm, Spring 2017

8

3
8 rotate right

T3
3

8
3 rotate left

3

81

3 color flip

T2T1

T1

T3T2

T1 T2 T3 T4

3

81

T1 T2 T3 T4

6 PRINCETON UNIVERSITY

5. Collections. (5 points)

To perform each task at left, write the letter of the best-matching collection at right.
Use each letter exactly once.

Implement the A* search algorithm.

Remove duplicates from a mailing list.

Implement function calls in the Java Virtual Machine.

Estimate the percolation threshold in an n-by-n grid.

Order students randomly for draw times in a housing
lottery.

Find all intersections among a set of n vertical and
horizontal line segments using the sweep-line algorithm.

Create a buffer of samples to send to a sound card in
a streaming audio application. The data must leave the
buffer in the same order that it entered.

Implement the A-Steal job scheduling algorithm, in which
Each processor maintains a list of threads to be executed.
To execute the next thread, the processor gets the thread
at the front of its list. If the list is empty, it steals a thread
from the back of another processor.

A. Stack

B. Queue

C. Randomized queue

D. Deque

E. Priority queue
(binary heap)

F. Symbol table
(hash table)

G. Ordered symbol table
(red–black BST)

H. Union–find

COS 226 MIDTERM, FALL 2019 7

6. Why did we do that? (8 points)

For each pair of algorithms or data structures, identify a critical reason why we prefer the
first to the second. Write the letter of the best-matching answer. You may use each letter
once, more than once, or not at all.

Implement a stack with a singly linked list instead
of a resizing array.

Implement a binary heap with a resizing array in-
stead of a binary tree (with explicit parent and chil-
dren pointers).

In weighted quick union, merge the smaller tree into
the larger tree instead of the larger tree into the
smaller tree.

Use quicksort instead of mergesort to sort an array
of primitive types.

Use mergesort instead of heapsort to sort an array
of objects.

During a delete-the-maximum operation in a binary
heap, exchange a key with the larger of its two chil-
dren instead of the smaller of its two children.

Rehash all of the keys into new chains in a separate-
chaining hash table when resizing the underlying ar-
ray instead of keeping the old chains.

When performing a 2d range search in a 2d-tree,
explore the left subtree before the right subtree.

A. Guarantees correctness

B. Improves order of
growth of worst-case
running time

C. Uses less memory

D. Stability

E. Arbitrary decision

8 PRINCETON UNIVERSITY

7. Data structures. (5 points)

Consider Java’s java.util.ArrayList data type. It stores a list (sequence) of n elements in
a resizing array (double when full, halve when one-quarter full), with the first element in the
list (front) always at array index 0 and the last element in the list (back) at array index n−1.

Midterm, Fall 2019: Collections

D A T A S T R U

a[0]

front of list back of list

a[n-1]

C T U R E S

For each part below, assume that there are n elements currently in the data structure. Based
on the given internal representation, for each expression at left, identify the best-matching
order-of-growth term at right. You may use each letter once, more than once, or not at all.

Return the element at index n/2 in the list.

Maximum amount of memory currently in use to repre-
sent the data structure.

Worst-case running time to perform n consecutive add-to-
back operations. Each add-to-back operation adds an element
to the back of the list.

Worst-case running time to perform n consecutive remove-
from-front operations. Each remove-from-front operation
removes the element at the front of the list.

Maximum number of times the array is resized when
performing n consecutive remove-from-back operations.

A. constant

B. logn

C. n

D. n logn

E. n2

F. n3

COS 226 MIDTERM, FALL 2019 9

8. Red, white, and blue pebbles. (8 points)

Suppose that you have an array a[] of length n containing n pebbles, each of which is colored
red, white, or blue. Moreover, assume that there is at least one pebble of each color and that
all pebbles of a given color are contiguous (but not necessarily in the order red, white, blue).
The only operation you may perform on a pebble is to check the color of a pebble (e.g., to
check whether two pebbles are the same color). Design an efficient algorithm to determine
the number of pebbles of each color.

Midterm, Fall 2019: Red, White, and Blue

B B B B B B B B

a[0] a[n-1]

W W R R R R R R

8 blue 6 red

2 white

Give a crisp and concise English description of your algorithm in the space below. Your
answer will be graded for correctness, efficiency, and clarity. For full credit, the order of
growth of the running time must be logn in the worst case.

If your solution relies upon an algorithm or data structure from the course, do not reinvent
it; simply describe how you are applying it.

10 PRINCETON UNIVERSITY

9. Data-type design. (10 points)

Design a data type to implement a double-ended priority queue. The data type must support
inserting a key, deleting a smallest key, and deleting a largest key. (If there are ties for the
smallest or largest key, you may choose among them arbitrarily.)

To do so, create a MinMaxPQ data type that implements the following API:Midterm, Fall 2019

public class MinMaxPQ<Key extends Comparable<Key>>

MinMaxPQ() create an empty priority queue

void insert(Key x) add x to the priority queue

Key min() return a smallest key

Key max() return a largest key

Key delMin() return and remove a smallest key

Key delMax() return and remove a largest key

Here are the performance requirements:

• The insert(), delMin(), and delMax() must take time proportional to logn (or better)
in the worst case, where n is the number of keys in the priority queue. Significant partial
credit for logn amortized.

• The min() and max() methods must take constant time in the worst case. Significant
partial credit for logn.

Here is an example:

MinMaxPQ<Integer> pq = new MinMaxPQ<Integer>(); // []

pq.insert(30); // [30]

pq.insert(40); // [30 40]

pq.max(); // [30 40] => 40

pq.delMin(); // [40] => 30

pq.insert(20); // [20 40]

pq.insert(10); // [10 20 40]

pq.delMax(); // [10 20] => 40

pq.insert(20); // [10 20 20]

pq.min(); // [10 20 20] => 10

pq.delMax(); // [10 20] => 20

pq.max(); // [10 20] => 20

Your answer will be graded for correctness, efficiency, and clarity (but not Java syntax). If
your solution relies upon an algorithm or data structure from the course, do not reinvent it;
simply describe how you are applying it.

COS 226 MIDTERM, FALL 2019 11

(a) Using Java code, declare the instance variables (along with any supporting nested classes)
that you would use to implement MinMaxPQ. You may use any of the data types that we
have considered in this course (either algs4.jar or java.util versions). You may also
make modifications to these data types; if you do so, describe the modifications.

public class MinMaxPQ<Key extends Comparable<Key>> {

(b) Draw the data structure(s) for a double-ended priority queue containing the following
seven keys: 10, 20, 20, 20, 30, 40, 50. (Do not worry about the order in which the keys
were inserted.) For linked data structures, draw all links.

12 PRINCETON UNIVERSITY

(c) Give a concise English description of your algorithm for implementing min() and max().
If symmetric, describe only min().

(d) Give a concise English description of your algorithm for implementing insert(x).

(e) Give a concise English description of your algorithm for implementing delMin() and
delMax(). If symmetric, describe only delMin().

COS 226 MIDTERM, FALL 2019 13

This page is intentionally blank. You may use this page for scratch work but do not remove
it from the exam.

14 PRINCETON UNIVERSITY

This page is intentionally blank. You may use this page for scratch work but do not remove
it from the exam.

