
COS 226 Algorithms and Data Structures Fall 2018

Midterm Solutions

1. Memory.

∼ 48n bytes

Each Node object requires 48 bytes: 16 (object overhead) + 16 (two references) + 8 (double)
+ 4 (int) + 4 (padding). In total the n Node objects consume 48n bytes.

2. Five sorting algorithms.

0 original array

5 quicksort (after first partition)

1 selection sort (after 12 iterations)

3 mergesort (just before left half of the array is sorted)

2 insertion sort (after 16 iterations)

4 heapsort (after heap construction phase and putting 6 largest keys into place)

6 sorted array

3. Analysis of algorithms.

(a) ∼ 2n2

Selection sort makes ∼ 1
2m

2 compares to sort any array of length m. Here, m = 2n.

(b) ∼ n2

Each integer i in the right half is inverted with with n− i integers in the left half and the
same n − i integers in the right half. So, the number of inversions is

0 + 2 + 4 + . . . + 2(n − 1) ∼ n2.

The number of compares in insertion sort is always within n of the number of inversions.

(c) ∼ n log2 n

Recall that the best case for a merge happens when all of the keys in one subarray are
larger than all of the keys in the other subarray. Sorted arrays always result in best-case
merges, as do reverse-sorted arrays. As a result, sorting the left half (a sorted array of
length n) takes 1

2n log2 n compares and sorting the right half (a reverse sorted array of
length n) takes 1

2n log2 n compares. Merging them together takes an extra 2n−1 compares.

With tilde notation, be sure to include the leading coefficient and the base of the logarithm
and to discard lower-order terms.



2 PRINCETON UNIVERSITY

4. Binary heaps.

(a) 3 6 14 16

(b) 4 5 6 7 9 13 14

5. Red–black BSTs.

22 color flip → 18 rotate left → 24 rotate right → 22 color flip → 14 rotate left

6. Data structure and algorithm properties.

(a) n4

Each computational experiment involves opening about 0.593n2 sites, where 0.593 is
the percolation threshold. Opening a site (and checking whether the system percolates)
takes a constant number of union (and find) operations. Since there are n2 sites, the
quick-find data structure has n2 elements. So, each find operation makes 1 array access
and each union operation makes about n2 array accesses.

Even in the worst case, if 0.593n2 sites are opened, a constant fraction of them will have
one (or more) open neighbors, each of which triggers a union operation.

(b) n
The amortized number of array accesses per operation is bounded by a some constant
c > 0. So, starting from an initially empty data randomized queue, any sequence of n
operations makes at most cn array accesses.

(c) logn
The range count requires two (deluxe) binary searches in a sorted array of length n.

(d) exponential
The A* algorithm with the Manhattan priority function is incapable of solving even
some 5-by-5 puzzles in a reasonable amount of time.

(e) n logn
Inserting a sequence of n keys in ascending order into a binary heap takes ∼ n log2 n
compares. (Each insert and delete-the-max operation makes at most 2 log2 n compares,
so no sequence of n operations makes more than 2n log2 n compares.)

(f) n logn
The height of any binary tree on n nodes is at least log2 n.

(g) n2

Consider a sequence of n insert operations in which each of the n keys has the same
hash code.



COS 226 MIDTERM SOLUTIONS, FALL 2018 3

7. System sort.

insertion sort
dual-pivot
quicksort

Timsort

Stable. ∎ ◻ ∎

In-place. ∎ ∎ ◻

At most ∼ n log2 n compares. ◻ ◻ ∎

Linear number of compares on arrays
with only 3 distinct keys.

◻ ∎ ◻

Linear number of compares on arrays
in ascending order.

∎ ◻ ∎

8. Duplicate in two arrays.

The key idea is to sort the smaller array and use binary search to check for duplicates.

1. Heapsort a[].

2. For each j, binary search for b[j] in a[]. If a search hit, then return b[j] since it
appears in both arrays.

Heapsorting a[] takes m logm time and uses constant extra space. Binary searching for b[j]
in a[] takes logm time (for a total of n logm time). Standard binary search (nonrecursive)
uses only constant extra space.

Some alternative approaches that don’t meet the performance requirements:

• Using mergesort instead of heapsort (linear extra space).

• Using quicksort instead of heapsort (logarithmic extra space for the recursion and does
not achieve a linearithmic running time in the worst case).

• Using a red–black BST or a hash table (linear extra memory).

• Heapsorting both a[] and b[] and then checking for duplicates with a merge operation
(n logn time instead of n logm).



4 PRINCETON UNIVERSITY

9. Data structure design.

The main idea is to maintain a hash table (such as java.util.HashMap) for each list, with
key = integer and value = number of times the integer appears in the list. Also maintain a
duplicate counter that counts the number of integers that appears in both lists.

• Increment the duplicate counter whenever

– an integer is added to a list for the first time and

– it also appears in the other list

• Decrement the duplicate counter whenever

– an integer is deleted from a list and

– it is the last such integer in the list and

– it appears in the other list

public class Duo {

private HashMap<Integer, Integer> list1 = new HashMap<>();

private HashMap<Integer, Integer> list2 = new HashMap<>();

private int duplicates = 0;

public void addToList1(int x) {

if (!list1.containsKey(x)) {

list1.put(x, 1);

if (list2.containsKey(x)) duplicates++;

}

else list1.put(x, list1.get(x) + 1);

}

public void deleteFromList1(int x) {

if (list1.get(x) == 1) {

list1.remove(x);

if (list2.containsKey(x)) duplicates--;

}

else list1.put(x, list1.get(x) - 1);

}

public boolean hasDuplicate() {

return duplicates > 0;

}

}

Without deletion, it suffices to maintain a hash set (such as java.util.HashSet) for each
list containing the set of integers in that list. Also, maintain a boolean variable that indicates
whether there exists an integer that appears in both lists.

• Set the boolean variable to true whenever

– an integer is added to a list for the first time and

– that integer also appears in the other list


