COS 226 Algorithms and Data Structures Fall 2018

Midterm Solutions

1. Memory.
~ 48n bytes

FEach Node object requires 48 bytes: 16 (object overhead) + 16 (two references) + 8 (double)
+ 4 (int) + 4 (padding). In total the n Node objects consume 48n bytes.

2. Five sorting algorithms.

—

)

= N W o= Ot

6

original array

quicksort (after first partition)

selection sort (after 12 iterations)

mergesort (just before left half of the array is sorted)

insertion sort (after 16 iterations)

heapsort (after heap construction phase and putting 6 largest keys into place)

sorted array

3. Analysis of algorithms.

(a)

(b)

~ 2n?
Selection sort makes ~ %mQ compares to sort any array of length m. Here, m = 2n.

2
~n
FEach integer i in the right half is inverted with with n—1 integers in the left half and the
same n — 1 integers in the right half. So, the number of inversions is

0+2+4+...42(n-1) ~ n?

The number of compares in insertion sort is always within n of the number of inversions.

~nlogon

Recall that the best case for a merge happens when all of the keys in one subarray are
larger than all of the keys in the other subarray. Sorted arrays always result in best-case
merges, as do reverse-sorted arrays. As a result, sorting the left half (a sorted array of
length n) takes %nlogzn compares and sorting the right half (a reverse sorted array of
length n) takes %nlogQ n compares. Merging them together takes an extra 2n—1 compares.

With tilde notation, be sure to include the leading coefficient and the base of the logarithm
and to discard lower-order terms.



PRINCETON UNIVERSITY

. Binary heaps.

(a)
(b)

361416

456791314

. Red—black BSTs.
22 color flip — 18 rotate left — 24 rotate right — 22 color flip — 14 rotate left

. Data structure and algorithm properties.

(a)

n*

Each computational experiment involves opening about 0.593n? sites, where 0.593 is
the percolation threshold. Opening a site (and checking whether the system percolates)
takes a constant number of union (and find) operations. Since there are n? sites, the
quick-find data structure has n? elements. So, each find operation makes 1 array access
and each union operation makes about n? array accesses.

Even in the worst case, if 0.593n? sites are opened, a constant fraction of them will have
one (or more) open neighbors, each of which triggers a union operation.

n

The amortized number of array accesses per operation is bounded by a some constant
¢ > 0. So, starting from an initially empty data randomized queue, any sequence of n
operations makes at most cn array accesses.

logn

The range count requires two (deluxe) binary searches in a sorted array of length n.
exponential

The A* algorithm with the Manhattan priority function is incapable of solving even
some 5-by-5 puzzles in a reasonable amount of time.

nlogn

Inserting a sequence of n keys in ascending order into a binary heap takes ~ nlogyn
compares. (Each insert and delete-the-max operation makes at most 2logy n compares,
so no sequence of n operations makes more than 2nlogy n compares.)

nlogn
The height of any binary tree on n nodes is at least log, n.

71/2

Consider a sequence of n insert operations in which each of the n keys has the same
hash code.



COS 226 MIDTERM SOLUTIONS, FALL 2018 3

7. System sort.

dual-pivot
quicksort

Stable. - D .

insertion sort Timsort

In-place.

At most ~ nlogsn compares.

0O 0O n

L
[
|

O | 0O

Linear number of compares on arrays
with only 8 distinct keys.

Linear number of compares on arrays
in ascending order.

[l

8. Duplicate in two arrays.

The key idea is to sort the smaller array and use binary search to check for duplicates.

1. Heapsort al[].

2. For each j, binary search for b[j] in a[]. If a search hit, then return b[j] since it
appears in both arrays.

Heapsorting a[] takes mlogm time and uses constant extra space. Binary searching for b[j]
in a[] takes logm time (for a total of nlogm time). Standard binary search (nonrecursive)
uses only constant extra space.

Some alternative approaches that don’t meet the performance requirements:

e Using mergesort instead of heapsort (linear extra space).

e Using quicksort instead of heapsort (logarithmic extra space for the recursion and does
not achieve a linearithmic running time in the worst case).

Using a red-black BST or a hash table (linear extra memory).

Heapsorting both a[] and b[] and then checking for duplicates with a merge operation
(nlogn time instead of nlogm).



PRINCETON UNIVERSITY

9. Data structure design.

The main idea is to maintain a hash table (such as java.util.HashMap) for each list, with
key = integer and value = number of times the integer appears in the list. Also maintain a
duplicate counter that counts the number of integers that appears in both lists.

e Increment the duplicate counter whenever
— an integer is added to a list for the first time and
— it also appears in the other list
e Decrement the duplicate counter whenever
— an integer is deleted from a list and
— it 1s the last such integer in the list and
— it appears in the other list

public class Duo {
private HashMap<Integer, Integer> listl = new HashMap<>();
private HashMap<Integer, Integer> list2 = new HashMap<>Q);
private int duplicates = O;

public void addTolListl(int x) {
if (!listl.containsKey(x)) {
listl.put(x, 1);
if (list2.containsKey(x)) duplicates++;
}
else listl.put(x, listl.get(x) + 1);

public void deleteFromListl(int x) {
if (listl.get(x) == 1) {
listl.remove(x);
if (1ist2.containsKey(x)) duplicates--;
}
else listl.put(x, listl.get(x) - 1);

public boolean hasDuplicate() {
return duplicates > O;

¥

Without deletion, it suffices to maintain a hash set (such as java.util.HashSet) for each
list containing the set of integers in that list. Also, maintain a boolean variable that indicates
whether there exists an integer that appears in both lists.

o Set the boolean variable to true whenever

— an integer is added to a list for the first time and
— that integer also appears in the other list



