
COS 226 Algorithms and Data Structures Fall 2017

Midterm

This exam has 10 questions (including question 0) worth a total of 55 points. You have 80 minutes.
This exam is preprocessed by a computer, so please write darkly and write your answers inside
the designated spaces.

Policies. The exam is closed book, except that you are allowed to use a one page cheatsheet
(8.5-by-11 paper, one side, in your own handwriting). No electronic devices are permitted.

Discussing this exam. Discussing the contents of this exam before solutions have been posted
is a violation of the Honor Code.

This exam. Do not remove this exam from this room. Write your name, NetID, and the room
in which you are taking the exam in the space below. Mark your precept number. Also, write and
sign the Honor Code pledge. You may fill in this information now.

Name:

NetID:

Exam room:

P01 P02 P03 P03A P04 P05 P06

#Precept:

“I pledge my honor that I will not violate the Honor Code during this examination.”

Signature

2 PRINCETON UNIVERSITY

0. Initialization. (1 point)

In the space provided on the front of the exam, write your name, NetID, and the room in
which you are taking the exam; mark your precept number; and write and sign the Honor
Code pledge.

1. Memory and data structures. (4 points)

Suppose that you implement a weighted quick-union data type using the following parent-link
representation:

public class WeightedQuickUnion {

private final int n; // number of elements

private final Node[] nodes; // array of n nodes

private static class Node {

private int size = 1; // subtree size

private Node parent = null; // parent link

}

// construct a weighted quick-union data structure with n elements

public WeightedQuickUnion(int n) {

this.n = n;

this.nodes = new Node[n];

}

...

}

Using the 64-bit memory cost model from lecture and the textbook, how much memory does
a WeightedQuickUnion object use as a function of the number of elements n? Use tilde
notation to simplify your answer.

∼ bytes

COS 226 MIDTERM, FALL 2017 3

2. Five sorting algorithms. (5 points)

The column on the left is the original input of strings to be sorted; the column on the right
are the strings in sorted order; the other columns are the contents at some intermediate step
during one of the five sorting algorithms listed below. Match each algorithm by writing its
number in the box under the corresponding column. Use each number exactly once.

0 prim heap flip edge flip miss edge

1 left left heap find left load find

2 load load java flip load loop flip

3 push lazy left hash loop list hash

4 sink node load heap miss left heap

5 time hash loop java null lazy java

6 loop loop miss lazy prim heap lazy

7 flip flip null left push java left

8 null null prim list sink flip list

9 miss miss push load swim hash load

10 trie edge rank loop time edge loop

11 swim find sink miss trie find miss

12 java java sort time find node node

13 sort list swim sort heap null null

14 rank prim time rank java prim prim

15 heap rank trie sink list push push

16 list sort list null rank rank rank

17 find swim find swim sort sink sink

18 tree tree tree tree tree sort sort

19 edge trie edge prim edge swim swim

20 hash time hash push hash time time

21 node sink node node node tree tree

22 lazy push lazy trie lazy trie trie

23 type type type type type type type

0 6

(0) Original input

(1) Selection sort

(2) Insertion sort

(3) Mergesort
(top-down)

(4) Heapsort

(5) Quicksort
(standard, no shuffle)

(6) Sorted

4 PRINCETON UNIVERSITY

3. Analysis of algorithms. (6 points)

Consider an array that contains two successive copies of the integers 1 through n, in ascending
order. For example, here is the array when n = 8:

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Note that the length of the array is 2n, not n.

(a) How many compares does selection sort make to sort the array as a function of n?
Use tilde notation to simplify your answer.

∼ compares

(b) How many compares does insertion sort make to sort the array as a function of n?
Use tilde notation to simplify your answer.

∼ compares

(c) How many compares does mergesort make to sort the array as a function of n?
Assume n is a power of 2. Use tilde notation to simplify your answer.

∼ compares

COS 226 MIDTERM, FALL 2017 5

4. Red–black BSTs. (6 points)

Suppose that you insert the key 31 into the following left-leaning red–black BST:

Midterm, Fall 2014

6

4

12

18

10

red link

8

28

22

20

24

32

26

16

30

2

14

Which of the following color flips and rotations result? Mark all that apply.

Color flips:

◻ ◻ ◻ ◻ ◻ ◻ ◻

18 22 26 28 30 31 32

Rotations:

◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻

18 left 18 right 28 left 28 right 30 left 30 right 32 left 32 right 33 left 33 right

Examples of color flips and rotations (for reference):

Midterm, Spring 2015

8

3
rotate 8 right

T3
3

8
rotate 3 left

3

81

color flip 3

T2T1

T1

T3T2

T1 T2 T3 T4

3

81

T1 T2 T3 T4Midterm, Spring 2015

8

3
rotate 8 right

T3
3

8
rotate 3 left

3

81

color flip 3

T2T1

T1

T3T2

T1 T2 T3 T4

3

81

T1 T2 T3 T4

6 PRINCETON UNIVERSITY

5. Hash tables. (5 points)

Suppose that the following keys are inserted into an initially empty linear-probing hash table,
but not necessarily in the order given,

key hash

B 3

G 5

I 3

N 5

O 1

P 5

R 4

and it results in the following hash table:

0 1 2 3 4 5 6

P R O B I N G

For each description at left, mark all keys that apply. Assume that the initial size of the hash
table is 7 and that it neither grows nor shrinks.

B G N O R

could have been first key inserted ◻ ◻ ◻ ◻ ◻

could have been last key inserted ◻ ◻ ◻ ◻ ◻

must have been inserted before I ◻ ◻ ◻ ◻ ◻

must have been inserted after I ◻ ◻ ◻ ◻ ◻

COS 226 MIDTERM, FALL 2017 7

6. Programming assignments. (6 points)

Answer the following questions about the COS 226 programming assignments.

(a) Consider implementing Percolation using a union–find implementation that supports
union and find in

√
m time per operation on a set of m elements. What is the order of

growth of the running time to perform one percolation experiment (open random sites
until the system percolates) on an n-by-n system? Mark the best answer.

n1/2 n n3/2 n2 n5/2 n3 n7/2 n4

#

(b) Consider implementing a Deque using a singly linked list, storing the first item in the
deque in the first node in the linked list (and the last item in the deque in the last node).
Which of the following operations could be implemented to run in constant time in the
worst case? Mark all that apply.

addFirst() addLast() removeFirst() removeLast() isEmpty()

◻ ◻ ◻ ◻ ◻

(c) Consider nearest-neighbor search in a 2d tree with n ≥ 1 points. Which of the following
are features of the algorithm and pruning rule specified in the assignment? Mark all
that apply.

◻ Guarantees to return a nearest neighbor.

◻ Guarantees logn time per operation in the worst case.

◻ Guarantees logn time per operation in the worst case if the 2d tree is balanced.

◻ Achieves logn time per operation on inputs likely to arise in practice.

8 PRINCETON UNIVERSITY

7. Data structure and algorithm properties. (6 points)

Match each quantity on the left by writing the letter of the best matching term at right. You
may use each letter more than once or not at all. Assume each algorithm is the standard
version, presented in the textbook.

Maximum number of key compares to binary search for a
key in a sorted array.

Maximum number of key compares to perform a Delete-
Max operation in a binary heap containing n keys.

Minimum height of a weighted quick-union tree with
n elements.

Minimum height of a binary search tree with n keys.

Minimum number of black links on path from the root to a
null link in a left-leaning red–black BST containing n keys.

Maximum number of times an array can be resized (doubled

or halved) during a sequence of n push and pop operations
(starting from an empty data structure) in a resizing-array
implementation of a stack.

A. constant

B. ∼ 1
2 log2 n

C. ∼ log3 n

D. ∼ loge n

E. ∼ log2 n

F. ∼ 2 loge n

G. ∼ 2 log2 n

H. ∼ 4.311 loge n

I. linear

COS 226 MIDTERM, FALL 2017 9

8. Largest bandwidth. (8 points)

Given n time intervals (li, ri) and associated bandwidths bi > 0, the bandwidth demand at
time t is the sum of the bandwidths of all intervals that contain t. Design an algorithm to
find a time t∗ that has the largest bandwidth demand.

In the example below, there are n = 7 time intervals. The largest bandwidth demand is 29
and occurs at time t∗ = 14.5: the bandwidth of the interval (12,15) is 10 and the bandwidth
of the interval (14,20) is 19.

42

Midterm Spring 2017: Maximum Bandwidth

12

5

6

13

bandwidth = 13 + 5 + 6 = 24

(t = 5.5)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

max bandwidth = 10 + 19 = 29

 (t* = 14.5)

10

19

3

time

bandwidth
of interval

Give a crisp and concise English description of your algorithm in the space below.

Your answer will be graded for correctness, efficiency, and clarity. For full credit, the worst-
case running time must be proportional to n logn. You may assume that all of the interval
endpoints are distinct.

10 PRINCETON UNIVERSITY

9. Data structure design. (8 points)

Create a data type UniQueue that implements a FIFO queue of strings with no duplicates,
according to the following API:

41

Midterm Spring 2017: Uni-Queue

public class UniQueue

UniQueue() create an empty uni-queue

void enqueue(String s)
add the string to the uni-queue
 (if it is not already in the uni-queue)

String dequeue()
remove and return the string least
recently added to the uni-queue

boolean isEmpty() is the uni-queue empty?That is, if a duplicate key is added to the uni-queue, it is ignored. Here is an example:

UniQueue queue = new UniQueue();

queue.enqueue("ant"); // ["ant"]

queue.enqueue("bear"); // ["ant", "bear"]

queue.enqueue("cat"); // ["ant", "bear", "cat"]

queue.enqueue("bear"); // ["ant", "bear", "cat"]

queue.enqueue("dog"); // ["ant", "bear", "cat", "dog"]

queue.dequeue(); // ["bear", "cat", "dog"]

queue.dequeue(); // ["cat", "dog"]

queue.enqueue("bear"); // ["cat", "dog", "bear"]

Your answer will be graded for correctness, efficiency, and clarity.

(a) Declare the instance variables for your UniQueue data type. You may declare nested
classes or use any of the data types that we have considered in this course.

public class UniQueue {

}

COS 226 MIDTERM, FALL 2017 11

(b) Briefly describe how to implement enqueue() and dequeue(), using either crisp and
concise prose or code.

public void enqueue(String s) {

}

Assume that the argument to enqueue() is not null.

public String dequeue() {

}

Do not worry about underflow.

(c) What is the order of growth of each operation as a function of the number of items n in
the data structure? Mark whether it is an amortized bound and/or makes the uniform
hashing assumption.

operation
order of
growth

amortized
bound

uniform hashing
assumption

enqueue() ◻ ◻

dequeue() ◻ ◻

