
COS 226 Algorithms and Data Structures Spring 2021

Final Exam Solutions

1. Initialization. Don’t forget to do this.

2. Memory usage.

(a) 6,553,600 (100 × 216)

The running time for V = E = 80 is 102400 = 100 × 210. Going down one row makes the
running time go up by a factor of 4; going right one column makes the running time go
up by a factor of 4. So, the running time for V = 320 and E = 160 is 100 × 210 × 42 × 4 =
100 × 216.

(b) Θ(V 2E2)

When you double V , the running time goes up by a factor of 4, so the exponent for V
is log2 4 = 2. When you double E, the running time goes up by a factor of 4, so the
exponent for E is also log2 4 = 2.

(c) Θ(V +E)

This code fragment iterates over all of the edges in the graph (twice).

3. String operations.

(3.1) n2

String concatenation takes time proportional to the length of the resulting string, so the
running time is Θ(1 + 2 + 3 + . . . + n) = Θ(n2) in the worst case (when the input string
has no space characters).

(3.2) n
Appending each character to the end of a StringBuilder object takes Θ(1) amortized
time. So, starting from an empty StringBuilder, appending n characters takes Θ(n)
time in the worst case.

(3.3) n logn
As with mergesort, each recursive call takes Θ(n) time, plus the time for two subproblems
of length n/2. So, the overall running time is Θ(n logn).

(3.4) removeSpaces1()

The best case occurs when the input string consists of n space characters. In this case,
the running time is Θ(n).

4. String sorts.

(4.1) LSD radix sort (after 1 pass)

(4.2) LSD radix sort (after 2 passes)

(4.3) MSD radix sort (after the first call to key-indexed counting)

(4.4) 3-way radix quicksort (after the first partitioning step)

(4.5) MSD radix sort (after the second call to key-indexed counting)
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5. Graph search.

(5.1) 0 2 6 3 8 9 1 5 7 4

(5.2) 8 3 5 1 9 6 4 7 2 0

(5.3) 0 2 4 7 6 5 1 3 8 9

6. Minimum spanning trees.

(6.1) 10 20 40 50 70 80 110

(6.2) 50 10 20 40 70 80 110

(6.3) 91
If x > 90, the edge of weight 90 will replace v-w in the MST. If x = 90, there will be to
MSTs—one containing v–w and one containing the other edge of weight 90.

7. Shortest paths.

0 3 1 4 2 5

Dijkstra’s algorithm relaxes the vertices in increasing order of distance from s.

8. Maximum flow.

(7.1) 33 = 7 + 3 + 23
Flow conservation implies that the flow leaving s equals the flow arriving at t.

(7.2) 6
The flow leaving s is 33. The flow arriving at t is x+ 7+ 20. These quantities are equal.

(7.3) 38 = 34 + 4

(7.4) A→ G→ B →H → I →D → J

(7.5) 3 = min{4,8,4,5,3,6}

(7.6) {A,B,C,F,G,H, I}.
After augmenting 3 units of flow along the augment path above, there are no remaining
augmenting paths, so it is a maxflow. We can find a mincut by finding the vertices
reachable from s via forward edges (that aren’t full) or backward edges (that aren’t empty).

9. Ternary search trie search.

D G I H F B Final, Spring 2020
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DB

n / 16 n / 16 n / 16 n / 16

n / 4

n / 2

10. Data compression.

(9.1) P E T A L S

(9.2) 2n

The corresponding Huffman trie is at right.
The number of bits to encode a message of length n is
4(n/16 + n/16 + n/16 + n/16) + 2(n/4) + 1(n/2) = 2n.

(9.3) 41 81 82 83 80
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11. Properties of graph algorithms.

(11.1) X X X

• Maximizing a function is equivalent to minimizing its negative. Prim’s algorithm
(and Kruskal’s algorithm) each work with negative weights.

• Prim’s algorithm (and Kruskal’s algorithm) each depend only the relative order of
the edge weights (and not on the actual values). For positive edge weights, x > y if
and only if 1/x < 1/y. So, both algorithm will compute a maximum spanning tree
when using the reciprocal weights.

• This is equivalent to negating the edge weights since, after negating the edge weights,
Kruskal’s algorithm processes the vertices in decreasing order of their original weight.

(11.2) X O X

• Maximizing a function is equivalent to minimizing its negative. Bellman–Ford works
with negative edge weights provided there are no negative cycles. The digraph is a
DAG, so there are no directed cycles.

• Here’s a small counterexample to see why taking reciprocals doesn’t lead to longest
paths. Using the original weights, the longest path is s → v → t. But, if we use the
reciprocal weights, the shortest path is s→ t.

Final, Spring 2021 Reciprocal Path

v ts 1 8

2

• This is the same dynamic programming recurrence that we saw in lecture for com-
puting shortest paths in DAGs, except with min replaced by max. It was also an
iClicker question.
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12. Properties of string algorithms.

(12.1) X X X

Key-indexed counting takes Θ(n +R) time, uses Θ(n +R) extra memory, and is stable

(12.2) O O X

• In the worst case, it takes Θ(mR) time to search for a string of length m since there
might be R left/right links to follow before matching each character.

• The memory of a TST is proportional to the number of nodes. But there might be
more than one node per string, e.g, if the strings are long and don’t overlap much.

• The shape of the TST is different depending on whether you insert the string "AAAAA"
before or after the string "BBBBB".

(12.3) O X X

• The best compression ratio is achieve on inputs that alternate between 255 0s and
255 1s, as in the iClicker question.

• This leads to a compression ratio is 8/1, which is the worst possible.

• The running time of run-length coding is Θ(n). After reading each bit, the run-
length coding algorithm updates a counter and, possibly, writes an 8-bit integer.

13. Problem identification.

(13.1) Possible

Use either DFS or BFS, as in precept.

(13.2) Possible

Use either DFS or BFS, as in precept.

(13.3) Possible

Add super source s (connected to all vertices in top row); replace each undirected edge
with two anti-parallel directed edges; and run Dijkstra’s algorithm from s.

(13.4) Possible

Sort using LSD or MSD radix sort. Since R = 2, this takes Θ(n) time. Duplicate IPv4
addresses will be adjacent.

(13.5) Impossible

Any Huffman code can be represented as a binary trie in which each node is either an
internal node (with two non-null links) or an external node corresponding to a character
(with two null links). Thus, the sibling of the node containing the longest codeword must
also be an external node.

(13.6) Impossible

If the LZW table contains a codeword for s, it contains a codeword for all prefixes of s.
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14. Simple directed path.

The key idea is to repeatedly push the vertices in the path P onto a stack in the order they
appear in P ), keeping track of which vertices are currently on the stack. Before pushing vertex
v onto the stack, check if v is already on the stack:

• If v is not on stack, push v onto stack.

• If v is on the stack, repeatedly pop vertices from the stack until reaching the other copy
of v.

This algorithm maintains the invariant that the stack defines a simple path from s to the
vertex v in P under consideration.

We can meet the performance requirements by using the following data structures:

• Use a linked list (or resizing array) for the stack. The stack operations take Θ(n) time
since each vertex in P is pushed onto the stack once and popped from the stack at most
once.

• Use a red–black BST to determine which vertices are on the stack. Maintaining the set
of vertices on the stack and answering queries takes O(n logn) time.

Note that a vertex-index array does not meet the full-credit performance requirements.
It takes Θ(V ) time to initialize the array and n can be much smaller than V .

Stack<Integer> stack = new Stack<>(); // stack of vertices

SET<Integer> set = new SET<>(); // vertices on stack

for (int v : inputPath) {

// v not currently on stack

if (!set.contains(v)) {

stack.push(v);

set.add(v);

}

// v already on stack

else {

while (stack.peek() != v) {

int w = stack.pop();

set.remove(w);

}

}

// reverse the stack

Stack<Integer> simplePath = new Stack<>(); // simple path from s to t

for (int v : stack)

simplePath.push(v);

}
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Alternative approaches:

• Run BFS or DFS from s in the digraph G. This will find a simple path. But it takes
Θ(E + V ) time in the worst case, which doesn’t meet the performance requirements.

• Build a digraph G′ containing only the edges in P and run BFS or DFS on this subgraph
of G. Naively, this takes Θ(n + V ) time, which doesn’t meet the performance require-
ments. The reason for this is that G′ still has V vertices (even if some of those vertices
have no incident edges).

To turn this into an O(n logn) time algorithm, we represent the digraph as a symbol
table mapping vertices to adjacency lists (instead of an array of length V mapping
vertices to adjacency lists). Specifically, we use a red–black BST to map from vertices in
P to linked lists of adjacent vertices. Now, run BFS or DFS in this digraph G′ (replacing
vertex-indexed arrays such as marked[] and edgeTo[] with red–black BSTs). Since G′

has at most n vertices and edges, BFS or DFS takes O(n logn) time, with the bottleneck
being the red–black BST operations.

• Here’s an elegant, full-credit solution. Create a red–black BST whose keys and values
are vertices, with the interpretation that st.get(v) gives the next vertex in the simple
path from s to t after v. To initialize the symbol table, insert they key–value pairs
corresponding to the sequence of edges in P .

// initialize the symbol table st

for (int i = 0; i < path.length - 1)

st.put(path[i], path[i+1]);

Then you can construct the path P ′ by starting at s and following the st.get(v) pointers
until reaching t.

// construct the simple path

Queue<Integer> simplePath = new Queue<>();

int v = s;

simplePath.enqueue(v);

while (v != t) {

v = st.get(v);

simplePath.enqueue(v);

}

Since, when inserting a key–value pair for a key already in the data structure, a symbol
tables overwrite the old value with the new value, the algorithm maintains the invariant
that there are no repeated vertices in the st.get() graph (except possibly the last one).
This lone cycle is not problematic because the construction algorithm stops as soon as
it finds the first copy of t.
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15. Missing string.

(a) Θ(nk)
There are n strings, each containing k bits.

(b) The main idea of the full-credit solution is to sort the strings and check for gaps between
adjacent strings in the sorted array.

More specifically

• Sort the strings using 3-way radix quicksort. Since, R = 2, the worst-case running
time is Θ(nk) and it uses only Θ(k) extra space (for the function-call stack).

• To look for a gap, first check whether a[0] is all 0s and a[n-1] is all 1s. If not, return
either all 0s or all 1s as the missing string, respectively. Otherwise, manipulate a[i]
and a[i+1] as k-bit integers; if a[i+1] does not equal a[i] + 1, return a[i] + 1

as the missing string.

“Adding 1” to a binary string of length k takes Θ(k) time, using an array. So,
looking for gaps takes O(nk) time and uses Θ(k) extra space.

As an alternative to 3-way radix quicksort, you can modify MSD radix sort to replace
key-indexed counting with an in-place variant. This can be done ala 2-way quicksort
partitioning because R = 2.

Here are a few partial-credit variants that do not quite meet the performance require-
ments:

• Using LSD or MSD radix sort takes Θ(nk) time but uses Θ(n + k) extra space for
key-indexed counting.

• Using mergesort takes Θ(nk logn) time in the worst case. For example, if all of
the strings start with k/2 1s, then every compare takes Θ(k) time and there are
Θ(n logn) compares.

• Using a 2-way trie takes Θ(nk) time but uses Θ(nk) extra space in the worst case.
For example, if all of the strings end in k/2 1s.

(b′) The main idea of the extra-credit solution is to determine the first bit in a missing string;
then find the remaining bits by recursively examining only the strings that start with that
bit. To do so, rearrange the strings into two subarrays: those that start with 0 and those
that start with 1 (e.g., using 2-way quicksort partitioning). Use whichever bit appears
least frequently as the first bit in the missing string. This takes Θ(n) time and uses Θ(1)
space. Finally, recur in the smaller subarray to determine the remaining k − 1 bits.

The overall running time of this approach is Θ(n + k).

• The Θ(k) term comes from building the missing string by repeatedly appending one
bit at a time, using a StringBuilder.

• The Θ(n) term accounts for all of the work from rearranging the strings and deter-
mining which bit appears least frequently. For the first bit, there are n strings
to consider; for the second bit, there are at most n/2 strings to consider; for
the third bit, there are at most n/4 strings to consider, and so forth. Recall
n + n/2 + n/4 + . . . = Θ(n).


