
COS 226 Algorithms and Data Structures Fall 2018

Final

This exam has 16 questions (including question 0) worth a total of 100 points. You have 180
minutes. This exam is preprocessed by a computer when grading, so please write darkly and
write your answers inside the designated spaces.

Policies. The exam is closed book, except that you are allowed to use a one-page cheatsheet
(8.5-by-11 paper, two sides, in your own handwriting). Electronic devices are prohibited.

Discussing this exam. Discussing the contents of this exam before solutions have been posted
is a violation of the Honor Code.

This exam. Do not remove this exam from this room. In the space provided, write your name and
NetID. Also, mark your exam room and the precept in which you are officially registered. Finally,
write and sign the Honor Code pledge. You may fill in this information now.

Name:

NetID:

Course: COS 126 COS 226

Exam room: McCosh 10 Other

#
P01 P01A P02 P02A P03 P03A P04 P05

#Precept:

“I pledge my honor that I will not violate the Honor Code during this examination.”

Signature

2 PRINCETON UNIVERSITY

0. Initialization. (2 point)

In the space provided on the front of the exam, write your name and NetID; mark your exam
room and the precept in which you are officially registered; write and sign the Honor Code
pledge.

1. Empirical running time. (5 points)

Suppose that you observe the following running times for a program on inputs of size n for
varying values of n.

n time

10,000 1.2 seconds

30,000 2.1 seconds

90,000 3.9 seconds

270,000 7.9 seconds

810,000 16.0 seconds

(a) Estimate the running time of the program (in seconds) for an input of size n = 2,430,000.

seconds

(b) Estimate the order of growth of the running time of the program as a function of n.

COS 226 FINAL, FALL 2018 3

2. Mathematical running time. (5 points)

Let list be a LinkedList object containing a sequence of n characters. For each code
fragment at left, write the letter corresponding to the order of growth of the worst-case
running time as a function of n.

Java’s LinkedList data type represents a sequence of items using a doubly linked list, main-
taining references to the first and last nodes. All operations are implemented in an efficient
manner for the given representation.

// convert the list to a string

String s = "";

for (char c : list)

s += c;

// Knuth shuffle

for (int i = 0; i < list.size(); i++) {

int r = (int) (Math.random() * (i + 1));

char c1 = list.get(r); // get element r

char c2 = list.get(i); // get element i

list.set(r, c2); // replace element r

list.set(i, c1); // replace element i

}

// sort (using Timsort/mergesort)

Collections.sort(list);

// palindrome?

boolean isPalindrome = true;

while (list.size() > 1) {

char c1 = list.removeFirst();

char c2 = list.removeLast();

if (c1 != c2) isPalindrome = false;

}

// create a reverse copy of the list

LinkedList<Character> copy = new LinkedList<Character>();

for (char c : list)

copy.addFirst(c);

A. 1

B. logn

C. n

D. n logn

E. n2

F. n3

4 PRINCETON UNIVERSITY

3. String sorts. (5 points)

The column on the left contains the original input of 24 strings to be sorted; the column on
the right contains the strings in sorted order; the other 5 columns contain the contents at
some intermediate step during one of the 3 radix-sorting algorithms listed below. Match each
algorithm by writing its letter in the box under the corresponding column.

6862 1131 5091 1131 3906 5790 1131

7924 1216 1131 1188 9608 9880 1188

1131 1188 2294 1216 8814 7270 1216

8276 2786 5790 2786 1216 1131 2294

9299 2294 1216 2294 7924 7671 2786

5790 3906 5035 3906 8424 6551 3906

1216 5790 2786 5790 1131 5091 5035

7383 5035 3906 5035 5035 6862 5091

8424 5091 1188 5091 9545 7383 5790

3906 6862 6188 6862 6551 7924 6188

9545 6551 6862 6551 9757 8424 6551

7671 6188 6551 6188 6862 8814 6862

9880 7924 9880 7924 7270 2294 7270

6551 7383 7671 7383 7671 9545 7383

1188 7671 9545 7671 8276 5035 7671

2786 7270 9608 7270 9880 8276 7924

9608 8276 8424 8276 7383 1216 8276

5035 8424 9757 8424 2786 3906 8424

9757 8814 8814 8814 1188 2786 8814

8814 9299 7383 9299 6188 9757 9299

2294 9545 9299 9545 5790 1188 9545

6188 9880 8276 9880 5091 9608 9608

5091 9608 7270 9608 2294 6188 9757

7270 9757 7924 9757 9299 9299 9880

A E

A. Original input

B. LSD radix sort

C. MSD radix sort

D. 3-way radix quicksort (no shuffle)

E. Sorted

COS 226 FINAL, FALL 2018 5

4. Depth-first search. (6 points)

Run depth-first search on the following digraph, starting from vertex 0. Assume the adjacency
lists are in sorted order: for example, when iterating over the edges pointing from 6, consider
the edge 6→1 before either 6→5 or 6→7.

Final, Fall 2018

postorder: 5 2 1 3 4 9 8 7 6 0
preorder: 0 5 6 1 2 7 8 4 3 9

65

10

8

4

9

3

7

2

run DFS from here

(a) List the 10 vertices in preorder.

0

(b) List the 10 vertices in postorder.

0

6 PRINCETON UNIVERSITY

5. Breadth-first search. (6 points)

Run breadth-first search on the following digraph, starting from vertex 0. Assume the adja-
cency lists are in sorted order: for example, when iterating over the edges pointing from 8,
consider the edge 8→3 before either 8→4 or 8→9.

Final, Fall 2018

65

10

8

4

9

3

7

2

run BFS from here

(a) List the 10 vertices in the order in which they are added to the queue.

0

(b) Give the entries in the edgeTo[] array upon termination of breadth-first search.

v 0 1 2 3 4 5 6 7 8 9

edgeTo[v] –

COS 226 FINAL, FALL 2018 7

6. Minimum spanning tree. (6 points)

Consider the following edge-weighted graph G containing 10 vertices and 17 edges. The thick
black edges T define a spanning tree of G but not a minimum spanning tree of G.

100

Final, Fall 2018

15080

120

3070 GF

BA

50 40

170

60

10I

E

J

D

H

140 C

90 160

110

20

130

H–I in MST instead of B–C(a) Find a cut in G whose minimum weight crossing edge is not an edge in T .
Mark the vertices on the side of the cut containing vertex A.

A B C D E F G H I J

∎ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻

(b) Which of the following edges are in the MST of G? Mark all that apply.

A–B B–C B–G B–H C–H D–H D–I D–J H–I

◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻

8 PRINCETON UNIVERSITY

7. Maximum flow. (8 points)

Consider the following flow network and maximum flow f∗.

Final, Fall 2018

13 / 15
26 / 26

0 / 13

6 / 6

37 / 4010 / 14F

max flow capacity

A

2 / 6
1 /

8 9 / 10

9 / 9

38 / 3837 / 37 I

E

J

19 / 1919 / 29

10 / 10

C

min cut: { A, B, F, G, H }
max flow value = 55

12 / 12

B

H

D

8 / 19

source

sink

G

(a) What is the value of the flow f∗?

(b) What is the capacity of the cut {A,B,C}?

(c) What is the net flow across the cut {A,B,C}?

(d) Which vertices are on the source side of the minimum cut? Mark all that apply.

A B C D E F G H I J

∎ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻

(e) Mark each edge below if increasing its capacity by 1 would increase the value of the
maximum flow by exactly 1.

A→F A→G B→C I→C I→J H→I

◻ ◻ ◻ ◻ ◻ ◻

COS 226 FINAL, FALL 2018 9

8. Huffman compression. (6 points)

Consider running Huffman compression over an alphabet of 16 characters with a given fre-
quency distributions of characters (i.e., entry i is how many times character i appears in the
input). For each frequency distribution below, write the length of the longest codeword.

{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }

(equal frequencies)

{ 1, 2, 4, 8, 16, 32, 64, 128, . . . , 215 }

(powers of 2)

{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . . , 16 }

(positive integers)

{ 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . , 987 }

(Fibonacci numbers)

10 PRINCETON UNIVERSITY

9. LZW compression. (6 points)

Compress the following string of length 15 using LZW compression.

A A B C B C A B B B C B C A C

As usual, assume that the original encoding table consists of all 7-bit ASCII characters and
uses 8-bit codewords. Recall that codeword 80 is reserved to signify end of file.

(a) Give the resulting sequence of 11 two-digit hexadecimal integers in the space below.

41 80

(b) Which of the following strings are in the LZW dictionary upon termination of the algo-
rithm? Mark all that apply.

AA AB ABB ABBB ABC BB BC BCA BCAC BCB BCBC CB

◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻

ASCII encoding. When you HexDump a bit-
stream that contains ASCII-encoded charac-
ters, the table at right is useful for reference.
Given a two digit hex number, use the first
hex digit as a row index and the second hex
digit as a column index to find the character
that it encodes. For example, 31 encodes the
digit 1, 4A encodes the letter J, and so forth.
This table is for 7-bit ASCII, so the first hex
digit must be 7 or less. Hex numbers starting
with 0 and 1 (and the numbers 20 and 7F)
correspond to non-printing control charac-
ters. Many of the control characters are left over from the days when physical devices
such as typewriters were controlled by ASCII input; the table highlights a few that you
might see in dumps. For example, SP is the space character, NUL is the null character, LF
is line feed, and CR is carriage return.

In summary, working with data compression requires us to reorient our thinking about
standard input and standard output to include binary encoding of data. BinaryStdIn
and BinaryStdOut provide the methods that we need. They provide a way for you to
make a clear distinction in your client programs between writing out information in-
tended for file storage and data transmission (that will be read by programs) and print-
ing information (that is likely to be read by humans).

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2 SP ! " # $ % & ‘ () * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [\] ^ _

6 ` a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~ DEL

Hexadecimal-to-ASCII conversion table

8155.5 � Data Compression

For reference, this is the hexadecimal-to-ASCII conversion table from the textbook.

COS 226 FINAL, FALL 2018 11

10. Knuth–Morris–Pratt substring search. (6 points)

Consider the Knuth–Morris–Pratt DFA for the string

C C A C C A C B

over the alphabet { A, B, C }.

(a) In which state is the DFA after consuming the following sequence of characters?

A B C

0 1 2 3 4 5 6 7 8

#

(b) In which state is the DFA after consuming the following sequence of characters?

C C B A C C A C C

0 1 2 3 4 5 6 7 8

#

(c) In which state is the DFA after consuming the following sequence of characters?

A C C C C A C C A C C C A C C C A C C C A C C A C C A C C A C

0 1 2 3 4 5 6 7 8

#

12 PRINCETON UNIVERSITY

11. Properties of shortest paths. (6 points)

For each statement at left, identify whether it is a property of Dijkstra’s algorithm and/or
the Bellman–Ford algorithm by writing the letter corresponding to the best-matching term
at right.

Assume that the digraph has positive edge weights and that all vertices are reachable from the
source vertex s. Recall that relaxing a vertex v means relaxing every edge pointing from v. As
usual, E denotes the number of edges and V denotes the number of vertices.

Each vertex is relaxed at most once.

Throughout the algorithm, distTo[v] is either
infinite or the length of some directed path from
s to v.

When relaxing edge v→ w, distTo[w] either
remains unchanged or decreases.

If the length of the shortest path from s to v is less
than the length of the shortest path from s to w,
then vertex v is not the last vertex relaxed.

In the worst case, the order of growth of the
running time is EV .

In the best case, the order of growth of the running
time is E + V .

A. Dijkstra’s algorithm
(using a binary heap for PQ)

B. Bellman–Ford algorithm
(queue-based implementation)

C. Both A and B.

D. Neither A nor B.

COS 226 FINAL, FALL 2018 13

12. Why did we do that? (8 points)

For each pair of algorithms or data structures, identify a critical reason why we prefer the
first to the second. Mark the best answer.

Use a queue instead of a stack to store the vertices
to be processed during breadth-first search of a
graph.

Use reverse postorder traversal instead of preorder
traversal to compute a topological order in a DAG.

Process the edges in ascending order of weight
in Kruskal’s algorithm instead of descending order.

Use Knuth–Morris–Pratt instead of brute-force for
substring search.

Use a stable sorting algorithm (key-indexed count-
ing) instead of an unstable one to rearrange the
strings as a subroutine of LSD radix sort.

Form an array of Suffix objects instead of an ar-
ray of String objects when suffix sorting a string.

Use a ternary-search trie instead of a 256-way trie
for a string symbol table over the extended ASCII
alphabet.

Initialize right[c] in Boyer–Moore to contain the
index of the rightmost occurrence of character c

instead of the leftmost occurrence.

A. Guarantees correctness.

B. Improves worst-case
running time.

C. Uses less memory.

D. Simpler to code.

14 PRINCETON UNIVERSITY

13. Regular expressions. (6 points)

Consider the NFA that results from applying the RE-to-NFA construction algorithm from
lecture and the textbook to the regular expression

(A * | (A | B C) *)

The states and match transitions (solid lines) are shown below, but most of the ε-transitions
(dotted lines) are suppressed.

Final, Fall 2018

0 1 3 4 5 6 7 8 9 10 11

(A A | B C) *| ()

12

*

2

ε-transition

A* | (A | BC)*

match transition

(a) Which of the following are edges in the full ε-transition digraph? Mark all that apply.

0→1 0→3 0→4 0→9 1→2 1→4 2→1 3→0 3→11 4→7

∎ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻

4→9 4→10 6→7 6→9 7→6 9→4 9→10 9→12 10→2 10→4

◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻

(b) Suppose that you simulate the NFA with the following input:

A A A A A A A A

In which states could the NFA be after consuming the entire input? Mark all that apply.

0 1 2 3 4 5 6 7 8 9 10 11 12

◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻

COS 226 FINAL, FALL 2018 15

14. Prefix count data structure. (10 points)

Design a data structure that supports inserting strings and prefix-count queries. A prefix-count
query returns the number of strings inserted into the data structure (including duplicates)
that start with a given prefix. To do so, describe how to implement this API:

Final, Fall 2018

public class PrefixCount

PrefixCount() create an empty data type

void insert(String s) add the string to the data structure

int prefixCount(String prefix) number of strings that start with prefix

Here is an example:

PrefixCount pc = new PrefixCount();

pc.insert("ANNA");

pc.insert("BELLA");

pc.insert("ANNABELLA");

pc.insert("AN");

pc.prefixCount("ANNA"); // 2

pc.prefixCount("BELL"); // 1

pc.insert("ANNA"); // duplicate

pc.insert("ANNABEL");

pc.prefixCount("ANNA"); // 4

pc.prefixCount("BANANA"); // 0

Your answer will be graded for correctness, efficiency, and clarity (but not precise Java syn-
tax). For full credit, the PrefixCount constructor must take constant time; insert() must
take time proportional to RL (or better); and prefixCount() must take time proportional to
L (or better), where L is the length of the string argument and R is the alphabet size.

16 PRINCETON UNIVERSITY

(a) In the space below, declare the Java instance variables for your PrefixCount data type
using Java code. You may define nested classes and/or use any of the data types that
we have considered in this course (either algs4.jar or java.util versions).

public class PrefixCount {

}

COS 226 FINAL, FALL 2018 17

(b) Describe how to implement insert(), using either Java code or concise prose. If it is
similar to an algorithm that we implemented in class, just say so and focus your answer
on the part that is different.

(c) Describe how to implement prefixCount(), using either Java code or concise prose. If
it is similar to an algorithm that we implemented in class, just say so and focus your
answer on the part that is different.

18 PRINCETON UNIVERSITY

15. Shortest directed cycle containing a given vertex. (9 points)

Given a digraphG with positive edge weights and a distinguished vertex s, design an algorithm
to find a shortest directed cycle that contains s (or report that no such cycle exists). To do
so, solve a source–sink shortest-paths problem on a related edge-weighted digraph.

For full credit, the order of growth of running time must be E logV (or better) in the worst
case, where E is the number of edges and V is the number of vertices. For simplicity, assume
no parallel edges or self loops.

Final, Fall 2018

C

A D E

B

20
80

10

60

70

30

50

40

C

A D E

B

20

10

60

70

30

50

40 A′

80

distinguished
vertex

source sink

G

G′

The shortest directed cycle containing A is A–B–C–D–A
and has weight 140 (20 + 10 + 30 + 80).

(a) Draw the source–sink shortest-paths problem that you would construct in order to find
the shortest directed cycle containing A in the 5-vertex digraph shown above. Be sure
to label the source and sink vertices and include the edge weights.

COS 226 FINAL, FALL 2018 19

(b) Give a crisp and concise English description of your algorithm in the space below.

Your answer will be graded for correctness, efficiency, and clarity.

