-

COS 217: Introduction to Programming Systems

WELCOME. TO YOUR FINAL EXAM.
I

THE EXAM IS NOW OVER.

IM AFRAID ALL OF YOU FAILED.

YOUR GRADES HAVE BEEN STORED
ON OUR DEPARTMENT SERVER AND
WiLL BF SUBMITTED TOMORROW.

CLASS DISMISSED,

Buffer Overrun Vulnerabilities and
Assignment 6 (The ‘B’ Attack) k

CYBERSECURITY FINAL EXAMS
xkcd.com/2385

% PRINCETON UNIVERSITY

J

https://unsplash.com/@fridooh

A Program

#include <stdio.h>
int main(void)

char name[12], c;
int i = 0, magic = 42;
printf("What is your name?\n");

while ((c = getchar()) != '\n")
name[i++] = c;
name[i] = '\0';

printf("Thank you, %s.\n", name);

printf("The answer to life, the universe, "
"and everything is %d\n", magic);

return 0;

{
}
$./a.out
What is your name?
John Smith

Thank you, John Smith.
The answer to life, the universe, and everything is 42

https://unsplash.com/@grakozy

-

Why People With Long Names Have Issues with Compu :

$./a.out
. > (Note: this is just the number that’s actually
What 1s your name: ’P ’???! !?! printed when you actually run the code. It’s not
Szymon Rusinkiewicz / an attempt to Easter egg a phone number or
Thank Jou Szymon Rusinkie \ anything like that. Please don’t try to call it. kthx)
’
4 iCZ n
\‘7 The answer to life, the universe, and everything is 8020841 4}

https://unsplash.com/@grakozy

-

Explanation: Stack Frame Layout

When there are too many characters,
program carelessly writes beyond

space “belonging” to name.
e Overwrites other variables
e This is a buffer overrun, or stack smash
* The program has a security bug!

#include <stdio.h>
int main(void)
{
char namel[12], c;
int i = @, magic = 42;
printf("What is your name?\n");
while ((c = getchar()) !'= "\n")
name[i++] = c;
name[i] = '\0@';
printf("Thank you, %s.\n", name);
printf("The answer to life, the universe, "
"and everything is %d\n", magic);
return 0;

0]
SP >
Old SPp =——

Return addr

name

magic

-
It Gets Worse...

Buffer overrun can overwrite return 0
address of a previous stack frame!

SP >
Return addr
name
#include <stdio.h> C
int main(void) .
{ magic
char name[12], c; i
int 1 = @0, magic = 42;
printf("What is your name?\n"); Old SP Return addr
while ((c = getchar()) !'= '\n')
name[i++] = c;
name[i] = '\0Q';

printf("Thank you, %s.\n", name);
printf("The answer to life, the universe,

"and everything is %d\n", magic);
return 0;

-
It Gets Worse...

Buffer overrun can overwrite return 0

address of a previous stack frame!

e Value can be an invalid address,
leading to a segfault, or ...

SP >
Return addr
nName

#include <stdio.h> C

int main(void) :

{ magic
char name[12], c; 1
int i = @, magic = 42;
printf("What is your name?\n"); Old SP OXx0042
while ((c = getchar()) !'= '\n')

name [i++] = c;
name[i] = '\0@';
printf("Thank you, %s.\n", name);
printf("The answer to life, the universe, "
"and everything is %d\n", magic);
return 0;
8 |3

-
It Gets Much Worse...

Buffer overrun can overwrite return 0

address of a previous stack frame!

e Value can be an invalid address,
leading to a segfault, or it can cleverly

SP >

cause unintended control flow! Return addr
name
#include <stdio.h> - text C
int main(void) .
i here magic
char namel[12], c; i
int i = 0, magic = 42; (
printf("What is your name?\n"); Old SP ’)
while ((c = getchar()) !'= '\n')
name[i++] = c;
namel[i] = '\0Q';

printf("Thank you, %s.\n", name);
printf("The answer to life, the universe,

"and everything is %d\n", magic);
return 0;

-

It Gets Much, Much Worse...

Buffer overrun can overwrite return 0

address of a previous stack frame!

e Value can be an invalid address,
leading to a segfault, or it can cleverly

SP >

cause unintended control flow, or even Return addr
cause arbitrary malicious code to execute! name
#include <stdio.h> - text C
int main(void) :
{ here magic
char name[12], c; 4
int i = 0, magic = 42; Q
printf("What is your name?\n"); Qld SP ‘
while ((c = getchar()) !'= '\n')
name[i++] = c;
name[i] = '\0@';

printf("Thank you, %s.\n", name);
printf("The answer to life, the universe,
"and everything is %d\n", magic);

.bss

/

Attacking a Web Server

URLSs

for(i=0;pl[i]; i++)
search[il=pl[i];

Input in web forms

Crypto keys for SSL o
@)
etc. T 0
ﬁ
Client PC Web Server

€ > C fi [www.cs.princeton.edu < =

éOMPUTER SCIENCE (this is a really long|d€atef] term that overflows a buffer

o RN AR VA g v
Internet Voting? Real y'?*ﬁ
Qv Andrew W. Appel >4

P

- .,
-~ s |
i1t .- {",[T’, \
W\ L\J 1\
h
TED even

-

Attacking a Web Browser

HTML keywords

|mages for(i=0;pl[i];i++)
img[i]=p[i];
Image names _© HDD”
URLSs]
% [T
etc. Client PC Web Server

@ badguy.com

€ > Cfi U www.badguy.com %

Earn $$$ Thousands
working at home!

-

Attacking Everything in Sight

for(i=0;pl[i]; i++)
important[i]l=p[il;

. © [0
% |

The Internet
@ badguy.com

Client PC
E-mail client
PDF viewer
Operating-system kernel

TCP/IP stack

Any application that ever sees input directly from the outside

[

Defenses Against This Attack

Best: program in languages that make
array-out-of-bounds impossible (Java, python, C#, ML, ...)

But if you need to use C...

(/'

Defenses Against This Attack

In C: use discipline and software analysis tools to check bounds of array subscripts

DESCRIPTION
The strecpy() function copies the string pointed to by src, including
the terminating null byte ('\@'), to the buffer pointed to by dest.
The strings may not overlap, and the destination string dest must be
large enough to receive the copy. Beware of buffer overruns! (See
BUGS.)

BUGS
Never use gets(). Because it is impossible to tell without knowing the data in advance how many characters gets() will read, and
because gets() will continue to store characters past the end of the buffer, it is extremely dangerous to use. It has been used to
break computer security. Use fgets() instead.

‘\\

None of these
would have
prevented the

* Randomize initial stack pointer “Heartbleed”

> attack

Augmented by OS- or compiler-level mitigations:

* “No-execute” memory permission for sections other than .text

e “Canaries” at end of stack frames

-

Assignment 6: Attack the “Grader” Program

$./grader

What is your name?
Szymon

D is your grade.

Thank you, Szymon.

$./grader

What is your name?
Andrew Appel

B is your grade.

Thank you, Andrew Appel.

-

Assignment 6: Attack the “Grader” Program

17

-
Assignment 6: Attack the “Grader” Program

18|

$./grader

What is your name?

Szymon\ 0 (#Q&$%*#& (x~1@%k ! | (&#$
B is your grade.

Thank you, Szymon.

-

Memory Map of STACK Section

19|

SP —
readString’s

stackframe

getName’s —
stackframe

main’'s —
stackframe

?77?77?
buf

buf
t;uf
?7??
??7?

272

Keep writing past end of buf

Get to getName'’s stackframe

What’s

S getName’s saved x30!

(somewhere on stack)

Overwrite 1it!

-

Assignment 6: Attack the “Grader” Program

$./grader

What is your name?

Szymon\ 0 (#Q&$%*#& (x~1@%k ! | (&#$
B is your grade.

Thank you, Szymon.

-

Memory Map of TEXT Section

readString —»
rS prolog

rS instrs..
rS instrs..

rS epilog
rS return

getName ——

checkappel:
if (strcmp(name, "Andrew Appel") != 0)
goto afterb
grade = ‘B’ <« HERE!
afterb:
print ...

main —

21

-

Construct Your Exploit String (createdataB. c)

1. Your name.

o After all, the grader program’s last

line of output must be:
“Thank you, [your name].”

2. A null byte.

e Otherwise, the grader program’s
last line of output will be corrupted.

3. Filler to overrun until x30.

 Presumably more null bytes are
easiest, but easter eggs are fine.

4. The address of the target
 The statement grade 'B’.

22

(=

fopen the file "dataB" and
write your name into that file
(e.g. with fprintf)

(=

See “Writing Binary Data”
precept handout. '\0"' is just
a single byte of binary data.

(=

Address is a 64-bit (little-endian)
unsigned integer (which in C is
spelled unsigned Llong).

-
Let’s Not Get Thrown In Jail, Please

OPEN ACCESS TO LAW SINCE 1992

Legal Information Institute [LHq

ABOUTLII» GETTHELAW)» LAWYER DIRECTORY LEGAL ENCYCLOPEDIA» HELP OUT)»

LIT ~ U.S. Code ~ Title 18 ~ PARTI -~ CHAPTER 47 ~ §1030

18 U.S. Code § 1030 - Fraud and related activity in
connection with computers

U.S. Code Notes State Regulations

(a) Whoever—

Government pursuant to an Executive order or statute to require protection against unauthorized disclosure
for reasons of national defense or foreign relations, or any restricted data, as defined in paragraph y. of

23 cartinn 11 of the iith reacan o helie

-

Summary

24

e This lecture:

 Buffer overrun attacks in general
 Assignment 6 “B Attack” principles of operation

 Next week’s first precept:
 Assignment 6 “B Attack” recap
e Memory map using gdb
Writing binary data

* Final 2 lectures:
 Assignment 6 “A Attack” overview
« Machine language details needed for “A Attack”
* Finally finishing the 4-stage build process: the Linker!

* Final precept:
* MiniAssembler and "A Attack” details

