-

COS 217: Introduction to Programming Systems

Character Manipulation and DFAs

% PRINCETON UNIVERSITY

[

Agenda

Simple C Programs

e upper (character data and /0, ctype library)
* portability concerns

e upperl (switch statements, enums, functions)
* DFA program design

Two big differences from Java

e \Variable declarations
e Logical operators

-

Agenda

Simple C Programs

e upper (character data and 1/0, ctype library)
e portability concerns

e upperl (switch statements, enums, functions)
* DFA program design

Two big differences from Java

e \Variable declarations
e Logical operators

-

Simple C program: “upper”

Functionality
e Read all chars from stdin

e | eave other kinds of chars alone
e Write result to stdout

stdin

e Convert each lower-case alphabetic char to upper case

stdout

Does this work? w
It seems to work.J

» upper

_L

What we need: character representation, |/0O

DOES THIS WORK?
IT SEEMS TO WORK.

|

-

The C char Data Type

char is 1 byte - designed to hold a single character
e Might be signed (-128..127) or unsigned (0..255)
e If using chars for arbitrary one-byte data, good to specify as “signed char” or “unsigned char”

Mapping from char values to characters on pretty much all machines:
ASCII (American Standard Code for Information Interchange)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 NUL HT LF
16
32 sP ! " # $ % & ! () s + , = . /
48 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
64 @ A B C D E F G H I J K L M N o)
80 P Q R S T U V W X Y Z [\ 1 A
96 : a b c d e £ g h i j k 1 m n o
112 P q r s t u v w X Yy z { | } =

Note: Lower-case and upper-case letters are 32 apart

-
Character Literals

Single quote syntax: 'a' is a value of type char with the value 97

Use backslash to write special characters
 Examples (with numeric equivalents in ASCII):

'a' the a character (97)

'A' the A character (65)

'O’ the zero character (48)
'\O0' the null character (0)
'\n' the newline character (10)

'\t' the horizontal tab character (9)
'"\\' the backslash character (92)

'"\'' the single quote character (39)
e the double quote character (34)

-
Aside: Unicode

Back in 1970s, English was the only language in the worldlcitation needed]
so we all used this alphabet lcitation needed] -

@ [2, [[& N AP N I A
!) .
- EI E Y N N I N I L O 5 I O N B
. o 1)1 21 3] 4] 5| 6 1

7l 8] 9 s < o= > 7
. - - 7’ = = L “" _ ; "(fAi J‘ YE K HC L 40 M YE N YF U
American Standard Code 42 BAx ewle s ST
. > . 7“ 5L -k’:— g LI 2 6C snm n GFO

for Information Interchange |22 2%2 I .

;Q 41] 2] 3L | 3L

B

In the 215t century, it turns out |22 22 =

I
i3 18 wo ¢ ;]'qq’.#’;

there are other languages! ks - A L
b 2 0 s = o o owm D
It
2

EN RN AR

,..
c
O -
. 8
-

o0
[3, 3

/

Modern Unicode

When C was designed, characters fit into 8 (really 7) bits, so C’'s chars are 8 bits long.
When Java was designed, Unicode fit into 16 bits, so Java’s chars are 16 bits long.

Then this happened:

N 1712 219pn
2/7/18 32pm

1988: 2018:
Y UNECDE" SRRRD || @) ok s 00 || T T (EPR?
sioup e v || 770 T '
PROBLEMS CAUSED BY - THNGS GOT
INCOMPATIBLE BINARY | | o A e e A LIME
TEXT ENCODINGS. IMPACT OF THIS CRITICAL CRUSTACEAN, LEIRD OKAY?
e) IN MAINE AND ACROSS THE COUNTRY. X,
\ YOURS TRULY,
-'1=?:?j‘(;‘ SENmm@@ % %

https://xkcd.com/1953/

| Result: modern systems use variable length (UTF-8) encoding for Unicode.

https://xkcd.com/1953/

-
Character Input/Output (I/0O) in C

Design of C:
e Does not provide 1/0 facilities in the language
 Instead provides |/0 facilities in standard library, declared in stdio.h
e Constant: EOF
e Data type: FILE (described later in course)
e Variables: stdin, stdout, and stderr
e Functions: ...

Reading characters
e getchar() function with return type wider than char (specifically, int)
e Returns EOF (a special non-character int) to indicate failure
 Reminder: there is no such thing as "the EOF character”

Writing characters

e putchar() function accepting one parameter
9 e For symmetry with getchar(), parameter is an int

-

“upper” Version 1

-

“upper” Version 2

-

ctype.h Functions

13|

-

ctype.h Functions

14

-

“upper” Version 3

15|

-
|> IClicker Question

16|

Q: Is the if statement really necessary?

A. Gee, | don’'t know.
Let me check
the man page
(again)!

-

ctype.h Functions

17

" a
|> IClicker Question

18

Q: Is the if statement really necessary?

A. Yes, necessary
for correctness.

B. Not necessary,
but I'd leave it in.

C. Not necessary,
and I'd get rid of it.

#include <stdio.h>
#include <ctype.h>
int main(void)
{
int c;
while ((c = getchar())
if (islower(c))
c = toupper(c) ;
putchar (c) ;
}

return 0O;

1= EOF) {

-
Agenda

Simple C Programs

e upper (character data and /0, ctype library)
* portability concerns

e upperl (switch statements, enums, functions)
 DFA program design

Two big differences from Java

e \Variable declarations
e Logical operators

19|

-
The “upperl” program

Functionality

e Read all chars from stdin
e Capitalize the first letter of each word
o “cos 217 rocks” = “Cos 217 Rocks”

e Write result to stdout

stdin stdout
cos 217 rocks Cos 217 Rocks
Does this work? uPperl Does This Work?
It seems to work. It Seems To Work.

What we need: maintain extra information, namely “in a word” vs “not in a word”

* Need systematic way of reasoning about what to do with that information
20|

-

Deterministic Finite Automaton

21

Deterministic Finite State Automaton (DFA)

Isalpha
(print uppercase equiv)

lisalpha
(print)

, one of which denotes the start
* Transitions labeled by chars or categories

e Optionally, actions on transitions

isalpha
(print)

-

“upperl” Version 1

22

lisalpha

isalpha

lisalpha

isalpha

-
“upperl” Toward Version 2

Problem:
* The program works, but...
e States should have names

Solution:
e Define your own named constants

enum Statetype {NORMAL, INWORD} ;
e Define an enumeration type

s enum Statetype state;
e Define a variable of that type

23

-

“upperl” Version 2

24

13

upperl” Toward Version 3

25|

Problem:
* The program works, but...
* Deeply nested statements
 No modularity

Solution:
 Handle each state in a separate function

26

“upperl” Version 3

#include <stdio.h>
#include <ctype.h>
enum Statetype {NORMAL, INWORD} ;

enum Statetype handleNormalState (int c)
{
enum Statetype state;
if (isalpha(c)) {
putchar (toupper (c)) ;
state = INWORD;
} else {
putchar (c) ;
state = NORMAL;
}

return state;

}

enum Statetype handleInwordState (int c)
{
enum Statetype state;
if ('isalpha(c)) {
putchar (c) ;
state = NORMAL;
} else {
putchar (c) ;
state = INWORD;
}

return state;

int main (void)

{

int c;
enum Statetype state = NORMAL;
while ((c = getchar()) != EOF) {

switch (state) {
case NORMAL:
state = handleNormalState (c) ;
break;
case INWORD:
state = handleInwordState (c) ;
break;
}
}

return 0O;

That’s an A-.
What's wrong?

-
“upperl” Toward Final Version

Problem:
* The program works, but...
e No comments

Solution:
e Add (at least) function-level comments

27

-

Function Comments

28|

Function comment should describe

what the function does (from the caller’s viewpoint)

 |nput to the function
e Parameters, input streams

e Qutput from the function
e Return value, output streams, (call-by-reference parameters)

Function comment should not describe
how the function works

-

Function Comment Examples

29|

Bad main() function comment

Read a character from stdin. Depending upon

the current DFA state, pass the character to

an appropriate state-handling function. The
value returned by the state-handling function
is the next DFA state. Repeat until end-of-file.

Describes how the function works

Good main() function comment

Read text from stdin. Convert the first character
of each "word" to uppercase, where a word is a
sequence of characters. Write the result

to stdout. Return O.

Describes what the function does
(from caller’s viewpoint)

-

“upperl” Final Version

Continued on
next slide

-

“upperl” Final Version

Continued on
next slide

-

“upperl” Final Version

Continued on
next slide

-

“upperl” Final Version

-

Agenda

34

Simple C Programs

e upper (character data and /0, ctype library)
* portability concerns

e upperl (switch statements, enums, functions)
* DFA program design

Two big differences from Java

e \Variable declarations
e Logical operators

-

Declaring Variables

35|

C requires variable declarations.

Motivation:
* Declaring variables allows compiler to check “spelling”
e Declaring variables allows compiler to allocate memory more efficiently
e Declaring variables’ types produces fewer surprises at runtime
e Declaring variables requires more from the programmer
e Extra verbiage
e Type foresight
* “Do what | mean, not what | say”

(

Declaring Variables

C requires variable declarations.
e Declaration statement specifies type of variable (and other attributes t00)

Examples:

int 1i;

int i, j;

int 1 = 5;

const int i = 5; /* value of i cannot change */
static int i; /* covered later in course */
extern int i; /* covered later in course */

-
Declaring Variables

C requires variable declarations.

e Declaration statement specifies type of variable (and other attributes t00)

* Unlike Java, declaration statements in C90 must appear before
any other kind of statement in compound statement

int 1i; int 1i;
/* Non-declaration int j;
stmts that use i. */ /* Non-declaration
» stmts that use i. */
int j; "
/* Non-declaration /* Non-declaration
stmts that use j. */ stmts that use j. */

37

lllegal in C Legal in C

-

Agenda

38|

Simple C Programs

e upper (character data and /0, ctype library)
* portability concerns

e upperl (switch statements, enums, functions)
* DFA program design

Two big differences from Java

e \Variable declarations
* Logical operators

-

Logical Data Types

39

* No separate logical or Boolean data type

* Represent logical data using type char or int
e Or any primitive type! :/

e Conventions: @lunarts

e Statements (if, while, etc.) use 0 = FALSE, #0 = TRUE
e Relational operators (<, >, etc.) and logical operators (!, &&, | |) produce the result O or 1

https://unsplash.com/@lunarts

-

Logical Data Type Shortcuts

Using integers to represent logical data permits shortcuts

It also permits some really bad code...

-
|> IClicker Brainteaser

41

Q: What is i set to in the following code?

i=(11'=2) + (3> 4);

A.O
B.1
C. 2
D.3
E.4

-
Logical Data Type Dangers

Beware: the following code will cause loss of sleep

int i What happens
in Java?
i=20;
if (i = 5)
statementl; What happens

in C?

42

Appendix:
Additional DFA Examples

-

Another DFA Example

Does the string have “nano” in it? Double circle is

* "banano = yes accepting state

e “nnnnnnnanofff” = yes
e “banananonano” = yes Single circle is

e “bananananashanana” = no rejecting state

other " other

¢ ' ¢ ‘ ii
@ n ‘ : e n @ : -I
/v «
a

other
other

44
other
J

[

Yet Another DFA Exa

mple

45|

Valid literals
« “-34”
« “78.1"
e “+208.3”
« “-34.7e-1”
* “34.7E-1"
«“7.7
«“77
e “099.99e€99”

Old Exam Question

Compose a DFA to identify whether or not

a string is a floating-point literal

Invalid literals
e “abc”
- “-€9”
e “1e”
° “+”
« “17.9A7

° “0.38+”

6 77

¢ “38.38f9"

