
$ cat welcome.c
#include <stdio.h>

int main(int argc, char *argv[])
{

printf("Welcome to COS 217\n");
printf("Introduction to Programming Systems\n\n");

printf("%s %d\n", "Fall", 2021);
return 0;

}

$ cat Makefile
CC=gcc217
welcome: welcome.o

$ make
gcc217 -c -o welcome.o welcome.c
gcc217 welcome.o -o welcome

$./welcome
Welcome to COS 217
Introduction to Programming Systems

Fall 2021

Agenda

Course overview
•Introductions
•Course goals
•Resources
•Grading
•Policies

A taste of C
•History of C
•Building and running C programs
•Characteristics of C
•Java vs C

2

Introductions
Lead Faculty
• Szymon Rusinkiewicz smr@cs.princeton.edu

Lead Preceptors
• Xiaoyan Li xiaoyan@cs.princeton.edu

• Christopher Moretti cmoretti@cs.princeton.edu

Faculty Preceptor
• Donna Gabai dgabai@cs.princeton.edu

Preceptors
• Cedrick Argueta argueta@princeton.edu

• Weicong Dong weicongd@princeton.edu

• Huihan Li huihanl@princeton.edu

• Maxine Perroni-Scharf mp4215@princeton.edu3

mailto:smr@cs.princeton.edu
mailto:xiaoyan@cs.princeton.edu
mailto:cmoretti@cs.princeton.edu
mailto:dgabai@cs.princeton.edu
mailto:argueta@princeton.edu
mailto:weicongd@princeton.edu
mailto:huihanl@princeton.edu
mailto:mp4215@princeton.edu

Agenda

Course overview
•Introductions
•Course goals
•Resources
•Grading
•Policies

A taste of C
•History of C
•Building and running C programs
•Characteristics of C
•Java vs C

4

Goal 1: Programming in the Large

Learn how to compose
large(r) computer programs

Topics
•Modularity/abstraction, information hiding, resource management,

error handling, testing, debugging, performance improvement
•Tools: ssh, bash, shell utilities, emacs, git, gcc, make, gdb, gprof, valgrind

5

Modularity!

6

Goal 2: Lower-level Languages

main:
.LFB0:
.cfi_startproc
stp x29, x30, [sp, -16]!
.cfi_def_cfa_offset 16
.cfi_offset 29, -16
.cfi_offset 30, -8
add x29, sp, 0
.cfi_def_cfa_register 29
b .L2

RELOCATION RECORDS FOR [.eh_frame]:
OFFSET TYPE VALUE
000000000000001c R_AARCH64_PREL32 .text

Contents of section .text:
0000 fd7bbfa9 fd030091 39000014
00000090 .{......9.......

int main(void) {
while ((iChar = getchar()) != EOF) {

lCharCount++;
if (isspace(iChar)) {

if (iInWord) {
lWordCount++;
iInWord = FALSE;

}
}

7

Goals: Summary
Help you to gain ...

Programming Maturity
Jungwoo Hong

8

https://unsplash.com/@hjwinunsplsh

Specific Goal: Learn C
Question: Why C instead of Java?

Answer 1: A primary language for
“under the hood” programming in
real code bases.

Answer 2: A variety of experience
helps you “program in the large”

9

Specific Goal: Learn Linux
Question: Why use the Linux operating system?

Answer 1: Linux is the industry standard for servers, embedded devices,
education, and research

Answer 2: Linux (with GNU tools) is good for programming
(which helps explain answer 1)

10

Programming Environment

Your Computer

SSH

ArmLab Cluster

Linux OS

GNU
tools

Your
Program

armlab01

Server Client

armlab02

11

Agenda

Course overview
•Introductions
•Course goals
•Resources
•Grading
•Policies

A taste of C
•History of C
•Building and running C programs
•Characteristics of C
•Java vs C

12

Lectures
Describe material at a mix of levels
• Some conceptual (high) overview
• Some digging into details

Slides on course website

Videos from last year available on Youtube

Etiquette
• Use electronic devices only for taking notes or annotating slides

(but consider taking notes by hand – research shows it works better!)
• No SnapFaceNewsBookInstaGoo, please

13

iClicker
Occasional questions in class, graded on participation
(with a generous allowance for not being able to attend)

• Can use either a physical remote, an app on your phone, or web

• Create account / register at iclicker.com
• If asked, we’re using “iClicker Cloud” and “Canvas”

14

iClicker Question
Q: Do you have an iClicker (remote or app) with you today?

A. Yes

B. No, but I’ve been practicing my mental electrotelekinesis and
the response is being registered anyway

C. I’m not here, but someone is iClicking for me
(don’t do this – it’s a violation of our course policies!)

Precepts
Describe material at the “practical” (low) level
• Support your work on assignments
• Hard-copy handouts distributed in precept
• Handouts available via course website

Etiquette
• Attend your precept: attendance will be taken
• Must miss your precept? ⇒ inform preceptors & attend another
• Use TigerHub to move to another precept

Precepts begin next Wednesday / Thursday (Sep 8 and 9)!
16

Websites

https://www.cs.princeton.edu/~cos217 (Course website)
•Home page, schedule page, assignment page, policies page

https://princeton.instructure.com/courses/4040 (Canvas)
•Links to Ed, Library reserves and other readings, NameCoach

17

https://www.cs.princeton.edu/~cos217
https://princeton.instructure.com/courses/4040

Ed
https://us.edstem.org/us/courses/8696/discussion/

•Also available as a Canvas link
•Q&A – post here instead of emailing staff

Etiquette
•Study provided material before posting question

•Lecture slides, precept handouts, required readings
•Read / search all (recent) Ed threads before posting question
•Don’t reveal your code!

•See course policies
•Click “private” if in doubt

18

https://us.edstem.org/us/courses/8696/discussion/

Books
C Programming: A Modern Approach (Second Edition) (required)

•King
•C programming language and standard libraries

ARM 64-bit Assembly Language (online)
•Pyeatt with Ughetta ‘21

The Practice of Programming (online)
•Kernighan & Pike
•“Programming in the large”

19

Manuals

Manuals (for reference only, available online)
•ARMv8 Instruction Set Overview
•ARM Architecture Reference Manual
•Using as, the GNU Assembler

See also
•Linux man command

20

Help!
Office Hours

• Preceptors: 2+ hours scheduled every weekday + Sunday, in-person and Zoom
• Me: after lecture or sign up via https://calendly.com/smr-princeton
• Schedule is on the course website
• Zoom form / links are on Canvas

Lab TAs
• Your peers are available 4+ hours per day, every single day
• These are specific to debugging your assignments.

For conceptual help with course materials, go to office hours.
• https://labta.cs.princeton.edu/

21

https://calendly.com/smr-princeton
https://labta.cs.princeton.edu/

Agenda

Course overview
•Introductions
•Course goals
•Resources
•Grading
•Policies

A taste of C
•History of C
•Building and running C programs
•Characteristics of C
•Java vs C

22

Grading

* 6 assignments ´ 10% each. Late assignments 20% off per day; 4 late days free.

** During midterms week and final exam period, respectively. Closed book/notes.

*** Did your involvement benefit the course?
• Lecture/precept attendance and precept/Ed participation

Course Component Percentage of Grade

Assignments * 60

Midterm Exam ** 10

Final Exam ** 20

Participation *** 10

23

Programming Assignments
Regular (every 1.5-2.5 weeks) assignments

0. Introductory survey
1. “De-comment” program
2. String module
3. Symbol table module
4. Debugging directory and file trees *
5. Assembly language programming *
6. Buffer overrun attack *
*(partnered assignment)

Assignments 0 and 1 are available now: start early!!
24

Pedro da Silva

https://unsplash.com/@pedroplus

Agenda

Course overview
•Introductions
•Course goals
•Resources
•Grading
•Policies

A taste of C
•History of C
•Building and running C programs
•Characteristics of C
•Java vs C

25

Policies
Learning is a collaborative activity!

• Discussions with others that help you understand
concepts from class are encouraged

But programming assignments are graded!
• Everything that gets submitted for a grade

must be exclusively your own work
• Don’t look at code from someone else, the web,

Github, etc. – see the course “Policies” web page
• Don’t reveal your code or design decisions to anyone except

course staff – see the course “Policies” web page

Violations of course policies
• Typical course-level penalty is 0
• Typical University-level penalty is suspension

26

Sanity
COS 1xx/2xx courses are hard under the best of circumstances

• Information-dense
• Programming is a new skill, or “craft”: not like writing essays or doing problem sets

These are not the best of circumstances
• We are all worried about ourselves, friends, family
• We all feel stressed, anxious, uncertain – but when these veer into panic or depression…

Say something, and get help
• Reach out to CPS, your residential college dean, course staff
• No judgment – the rest of us are feeling it too

27

Questions?

Agenda

Course overview
•Introductions
•Course goals
•Resources
•Grading
•Policies

A taste of C
•History of C
•Building and running C programs
•Characteristics of C
•Java vs C

29

The C Programming Language

Who? Dennis Ritchie

When? ~1972

Where? Bell Labs

Why? Build the Unix OS

30

Java vs. C: History

BCPL B C K&R C ANSI C89
ISO C90

ISO C99
ANSI C99

1960 1970 1972 1978 1989 1999

LISP Smalltalk

C++ Java

ISO C11

2011

Algol

Simula

This is what
we’re using

31

C vs. Java: Design Goals

C Design Goals (1972) Java Design Goals (1995)

Build the Unix OS Language of the Internet

Low-level; close to HW and OS High-level; insulated from
hardware and OS

Good for system-level
programming

Good for application-level
programming

Support structured programming Support object-oriented
programming

Unsafe: don’t get in the
programmer’s way

Safe: can’t step
“outside the sandbox”
Look like C!

32

Agenda

Course overview
•Introductions
•Course goals
•Resources
•Grading
•Policies

A taste of C
•History of C
•Building and running C programs
•Characteristics of C
•Java vs C

33

HW (ArmLab)

OS (Linux)

Building Java Programs

MyProg.java
(Java code) javac MyProg.class

(bytecode)

$ javac MyProg.java Java compiler
(machine lang code)

34

Running Java Programs

$ java MyProg

MyProg.class
(bytecode)

Java interpreter /
“virtual machine”

(machine lang code)

HW (ArmLab)

OS (Linux)

data java data

35

HW (ArmLab)

OS (Linux)

Building C Programs

myprog.c
(C code) gcc217 myprog

(machine lang code)

$ gcc217 myprog.c –o myprog C “Compiler driver”
(machine lang code)

36

Running C Programs

$./myprog myprog
(machine lang code)

HW (ArmLab)

OS (Linux)

data myprog data

37

Agenda

Course overview
•Introductions
•Course goals
•Resources
•Grading
•Policies

A taste of C
•History of C
•Building and running C programs
•Characteristics of C
•Java vs C

38

Java vs. C: Portability

Program Code Type Portable?
MyProg.java Java source code Yes
myprog.c C source code Mostly

MyProg.class Bytecode Yes
myprog Machine lang code No

Conclusion: Java programs are more portable

(For example, COS 217 has used many architectures over the years,
and every time we switched, all our programs had to be recompiled!)

39

Java vs. C: Safety & Efficiency
Java

•Automatic array-bounds checking,
•NULL pointer checking,
•Automatic memory management (garbage collection)
•Other safety features

C
•Manual bounds checking
•NULL pointer checking,
•Manual memory management

Conclusion 1: Java is often safer than C

Conclusion 2: Java is often slower than C40

Q: Which corresponds to the C programming language?

A.

B.

C.

iClicker Question

Example C Program
#include <stdio.h>
#include <stdlib.h>

int main(void)
{ const double KMETERS_PER_MILE = 1.609;

int miles;
double kMeters;

printf("miles: ");
if (scanf("%d", &miles) != 1)
{ fprintf(stderr, "Error: Expected a number.\n");

exit(EXIT_FAILURE);
}

kMeters = (double)miles * KMETERS_PER_MILE;
printf("%d miles is %f kilometers.\n",

miles, kMeters);
return 0;

}42

Agenda

Course overview
•Introductions
•Course goals
•Resources
•Grading
•Policies

A taste of C
•History of C
•Building and running C programs
•Characteristics of C
•Java vs C

43

Java vs. C: Details

Remaining slides provide some details

Use for future reference

Slides covered now, as time allows…

44

Java vs. C: Details

Java C

Overall
Program
Structure

Hello.java:

public class Hello
{ public static void main

(String[] args)
{ System.out.println(

"hello, world");
}

}

hello.c:

#include <stdio.h>

int main(void)
{ printf("hello, world\n");

return 0;
}

Building $ javac Hello.java $ gcc217 hello.c –o hello

Running
$ java Hello
hello, world
$

$./hello
hello, world
$

45

Java vs. C: Details

Java C
Character type char // 16-bit Unicode char /* 8 bits */

Integral types

byte // 8 bits
short // 16 bits
int // 32 bits
long // 64 bits

(unsigned, signed) char
(unsigned, signed) short
(unsigned, signed) int
(unsigned, signed) long

Floating point
types

float // 32 bits
double // 64 bits

float
double
long double

Logical type boolean
/* no equivalent */
/* use 0 and non-0 */

Generic pointer
type

Object void*

Constants final int MAX = 1000;
#define MAX 1000
const int MAX = 1000;
enum {MAX = 1000};

46

Java vs. C: Details

Java C

Arrays
int [] a = new int [10];
float [][] b =

new float [5][20];

int a[10];
float b[5][20];

Array bound
checking

// run-time check /* no run-time check */

Pointer type
// Object reference is an
// implicit pointer int *p;

Record type

class Mine
{ int x;

float y;
}

struct Mine
{ int x;

float y;
};

47

Java vs. C: Details

Java C

Strings
String s1 = "Hello";
String s2 = new

String("hello");

char *s1 = "Hello";
char s2[6];
strcpy(s2, "hello");

String
concatenation

s1 + s2
s1 += s2

#include <string.h>
strcat(s1, s2);

Logical ops * &&, ||, ! &&, ||, !

Relational ops * ==, !=, <, >, <=, >= ==, !=, <, >, <=, >=

Arithmetic ops * +, -, *, /, %, unary - +, -, *, /, %, unary -

Bitwise ops <<, >>, >>>, &, ^, |, ~ <<, >>, &, ^, |, ~

Assignment ops
=, +=, -=, *=, /=, %=,
<<=, >>=, >>>=, &=, ^=, |=

=, +=, -=, *=, /=, %=,
<<=, >>=, &=, ^=, |=

* Essentially the same in the two languages
48

Java vs. C: Details

Java C

if stmt *

if (i < 0)
statement1;

else
statement2;

if (i < 0)
statement1;

else
statement2;

switch stmt *

switch (i)
{ case 1:

...
break;

case 2:
...
break;

default:
...

}

switch (i)
{ case 1:

...
break;

case 2:
...
break;

default:
...

}

goto stmt // no equivalent goto someLabel;

* Essentially the same in the two languages
49

Java vs. C: Details

Java C

for stmt
for (int i=0; i<10; i++)

statement;

int i;
for (i=0; i<10; i++)

statement;

while stmt *
while (i < 0)

statement;
while (i < 0)

statement;

do-while stmt *
do

statement;
while (i < 0)

do
statement;

while (i < 0);

continue stmt * continue; continue;

labeled continue
stmt

continue someLabel; /* no equivalent */

break stmt * break; break;

labeled break
stmt

break someLabel; /* no equivalent */

* Essentially the same in the two languages
50

Java vs. C: Details

Java C

return stmt *
return 5;
return;

return 5;
return;

Compound stmt
(alias block) *

{
statement1;
statement2;

}

{
statement1;
statement2;

}

Exceptions throw, try-catch-finally /* no equivalent */

Comments
/* comment */
// another kind

/* comment */

Method / function
call

f(x, y, z);
someObject.f(x, y, z);
SomeClass.f(x, y, z);

f(x, y, z);

* Essentially the same in the two languages
51

Summary
Course overview

•Introductions
•Course goals

•Goal 1: Learn “programming in the large”
•Goal 2: Look “under the hood”and learn low-level programming
•Use of C and Linux supports both goals

•Resources
•Lectures, precepts, programming environment, Ed, textbooks
•Course website: access via https://www.cs.princeton.edu/~cos217

•Grading
•Policies

52

Summary

Getting started with C
•History of C
•Building and running C programs
•Characteristics of C
•Details of C

•Java and C are similar
•Knowing Java gives you a head start at learning C

53

Getting Started

Check out course website soon
•Study “Policies” page

Next Tuesday: computing environment
• In preparation for assignments 0 and 1

54

