Lecture 21
Compression; Error detection and correction
Compression; Error detection and correction

• **compression: squeeze out redundancy**
 – to use less memory and/or use less network bandwidth,
 – encode the same information in fewer bits
 • some bits carry no information
 • some bits can be computed or inferred from others
 • some bits don't matter to the recipient and can be dropped entirely

• **error detection & correction: add redundancy**
 – to detect and fix up loss or damage
 – add carefully defined, systematic redundancy
 – with enough of the right redundancy,
 can detect damaged bits
 can correct errors
Compressing English text

- letters do not occur equally often
- encode frequent letters with fewer bits,
- encode less frequent letters with more bits
- trades complexity against space
 - e.g., Morse code, Huffman code, ...

- run-length encoding
 - encode runs of identical things with a count
 - e.g., World Wide Web Consortium => WWWC => W3C

- words do not occur equally often
- encode whole words or phrases, not just letters
 - e.g., abbreviations for frequent words or sequences
 - acronyms, shorthands, ...
Lempel-Ziv coding; adaptive compression algorithms

- build a dictionary of recently occurring data
- replace subsequent occurrences by (shorter) reference to the dictionary entry
- dictionary adapts as more input is seen
 - compression adapts to properties of particular input
 - algorithm is independent of nature of input
- dictionary is included in the compressed data

- Lempel-Ziv is the basis of PKZip, Winzip, gzip, GIF
 - compresses Bible from 4.1 MB to 1.2 MB (typical for text)

- Lempel-Ziv is a lossless compression scheme
 - compression followed by decompression reproduces the input exactly

- lossy compression: may do better if can discard some information
 - commonly used for pictures, sounds, movies
JPEG (Joint Photographic Experts Group) picture compression

• a lossy compression scheme, based on how our eyes work
• digitize picture into pixels
• discard some color information (use fewer distinct colors)
 – eye is less sensitive to color variation than brightness
• discard some fine detail
 – decompressed image is not quite as sharp as original
• discard some fine gradations of color and brightness

• use Huffman code, run-length encoding, etc., to compress resulting stream of numeric values

• compression is usually 10:1 to 20:1 for pictures
• used in web pages, digital cameras, ...
PNG (Portable Network Graphics) compression

- PNG is lossless
- PNG was always an open algorithm – no patent issues

- PNG versus JPG?
 - JPG is "designed for photographic image data, which is typically dominated by soft, low-contrast transitions, and an amount of noise or similar irregular structures."
 - "Using PNG instead of a high-quality JPEG for such images would result in a large increase in filesize with negligible gain in quality."
 - "In comparison, when storing images that contain text, line art, or graphics – images with sharp transitions and large areas of solid color – the PNG format can compress image data more than JPEG can. Additionally, PNG is lossless, while JPEG produces visual artifacts around high-contrast areas."

- "Where an image contains both sharp transitions and photographic parts, a choice must be made between the two effects."
MPEG (Moving Picture Experts Group) movie compression

- MPEG-4: lossy compression scheme, based on human perceptions
 - H.264 is most-used current version
- uses JPEG for individual frames (spatial redundancy)
- adds compression of temporal redundancy
 - look at image in blocks
 - if a block hasn't changed, just transmit that fact, not the content
 - if a block has moved, transmit amount of motion
 - motion prediction (encode expected differences plus correction)
 - separate moving parts from static background
 - ...
- used in phones, DVD, TV, Internet video, video games, ...
- rate depends on resolution, frame rate, ...
MP3 (MPEG Audio Layer-3) sound compression

- movies have sound as well as motion; this is the audio part
- 3 levels, with increasing compression, increasing complexity
- based on "perceptual noise shaping":
 - use characteristics of the human ear to compress better:
 - human ear can't hear some sounds (e.g., very high frequencies)
 - human ear hears some sounds better than others
 - louder sounds mask softer sounds
- break sound into different frequency bands
- encode each band separately
- encode 2 stereo channels as 1 plus difference
- gives about 10:1 compression over CD-quality audio
 - 1 MB/minute instead of 10 MB/minute
 - can trade quality against compression
Summary of compression

• eliminate / reduce redundancy
 – more frequent things encoded with fewer bits
 – use a dictionary of encoded things, and refer to it (Lempel-Ziv)
 – encode repetitions with a count

• not everything can be compressed
 – something will be bigger

• lossless vs lossy compression
 – lossy discards something that is not needed by recipient

• tradeoffs
 – encoding time and complexity vs decoding time and complexity
 – encoding is usually slower and more complicated (done once)
 – parameters in lossy compressions
 size, speed, quality
Error detection and correction

- systematic use of redundancy to defend against errors

- some common numbers have no redundancy
 - and thus can't detect when an error might have occurred
 - e.g., SSN -- any 9-digit number is potentially valid

- if some extra data is added or if some possible values are excluded, this can be used to detect and even correct errors

- common examples include
 - ATM & credit card numbers
 - ISBN for books
 - bar codes for products
ATM card checksum

- credit card / ATM card checksum:
 starting at rightmost digit:
 multiply digit alternately by 1 or 2
 if result is > 9 subtract 9
 add the resulting digits
 sum should be divisible by 10

 e.g., 12345678 is invalid
 \[8 + (14-9) + 6 + (10-9) + 4 + 6 + 2 + 2 = 34 \]
 but 42345678 is valid
 \[8 + (14-9) + 6 + (10-9) + 4 + 6 + 2 + 8 = 40 \]

- defends against transpositions and many single digit errors
 - these are the most common errors
Parity & other binary codes

• parity bit: use one extra bit so total number of 1-bits is even
 0110100 => 01101001
 0110101 => 01101010
 – detects any single-bit error

• more elaborate codes can detect and even correct errors

• basic idea is to add extra bits systematically so that legal values are
 uniformly spread out, so any small error converts a legal value into an
 illegal one
 – some schemes correct random isolated errors
 – some schemes correct bursts of errors (used in CD-ROM and DVD)

• no error correcting code can detect/correct all errors
 – a big enough error can convert one legal pattern into another one